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Two Beakers, Five E’s, Twenty
Pennies,and Archimedes’ Principle
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he lesson presented here provides a multifaceted

inquiry-based opportunity to develop a deep grasp

of Archimedes’ principle. It was originally devel-
oped for high school teachers as part of their training in
the basic structure of the Next Generation Science Stan-
dards. There are numerous demonstrations illustrating
Archimedes’ principle,!*® many of which can be found in
this journal.5® (Please see the online appendix for further
references from this journal.)® However, we have a unique
combination of ingredients, i.e., the particular puzzle it
addresses and its associated historical context; the biologi-
cal application; the accessible, hands-on collection and ex-
ploration of data; the powerful graphs encouraging phys-
ics-based explanations; and the ability to compare with an
analytical solution. These materials brought together
in one place provide teachers a novel and exceptionally
rich recipe to bring to their classrooms.

In approaching this puzzle, we have chosen as scaf-
folding the BSCS 5E ¥ framework. This inquiry-based
approach embraces the idea that learners build new
ideas on top of old ones through several phases of -
learning: Engage, Explore, Explain, Elaborate, and
Evaluate. It is beyond the scope of this work to include
summative assessments addressing conceptual flow and
formative assessments that might include examples of
science notebook entries, student work, or written quiz-
zes. Nevertheless, we have included student questions
throughout and frequent references to Fig. I, which serves
our foundation.

The Engage phase begins with the simple question the

puzzle poses: when a boat is floating in a pool and its anchor

is tossed overboard, how does the water level in the pool
change? The Engage phase also shares a historical account

showing that even the most accomplished physicists are not

always right in their initial thinking. At first, the stndents
would be invited to suggest their own method to Explore.
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Fig. 1. Mass and corresponding water volume displacement fer cubes and
pennies placed directly in water and in a beaker floating in water. The solid
regression line through the red data symbols (a) has a slope of 0.99 ml/g
and an offset 0.96 ml. These symbols represent measurements of objects
that floated either by themselves or within a beaker. The nearly flat dotted
regression line (b), associated with the biue symbols representing mea-
suremenis of cubes that sank when placed directly in water, has a slope
of -0.0036 ml/g and an offset of 16.9 ml. The dashed regression line (c)
through the gold symbols has a siope of 0.1453 mi/g and offset of 0.0817
ml. These symbols represent the measurements of the 10, 20, 30, 40, and
50 pennies that sank when put directly in water. A second pair of axis
labels designates the equivalent force (N). The regression lines are all with
respect to the inner axes. Note that equations for regression lines in terms
of the second, outer axes will be different.

Engage

A celebrated buoyancy problem among physicists
goes something like the following: Consider an anchor ina
boat floating in a peol. While the anchor is in the boat, the
water level in the pool is marked. The anchor is then dropped
to the bottom of the pool, with the boat still in the pool. The
question is whether the water level in the pool goes up, down,
or remains the same. As legend has it, this question was asked
of George Gamow, Robert Oppenheimer, and Felix Bloch, all

as
3,7,12

Through the teacher’s guidance, they would collect and graph
several data sets of displaced water as a function of the mass
of the object causing the displacement. The Explain phase
encourages the students to identify trends in the data and
look for the underlying physics responsible for these trends.
The Elaborate phase describes how dolphins adapt to their
buoyancy challenges—air at water’s surface but food below

it. Finally, the Evaluate phase returns to the initial question
proposed in the Engage phase, inviting students to make their
prediction, explain their reasoning, test their prediction, and
try again if necessary.
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extraordinary physicists. To their embarrassment, they all got
it wrong.1* We provide here a hands-on desktop model of this
puzzle that every student can systematically explore both by
direct observation and through the amplifying lens of graph-
ing data. For comparison'’s sake, our measurements as well as
an analytical solution are included.

While others"” have suggested different materials for
variations of this classroom experiment, we suggest a simpler
approach where the pool, boat, and anchor are represented,
respectively, as an outer beaker, inner beaker, and 20 pennies.
Water in the outer beaker corresponds to water in the pool.

DOI: 10,1119/1.5092468




Beakers need to be chosen so that the inner one, with 20 pen-
nies in it, will float within the outer one. The outer beaker
should be small enough so that a change in water level can be
sensibly estimated when the pennies are “tossed overboard”
However, the space between the inner and outer beakers must
be large enough that capillary effects do not confound water
level readings. Similar reasoning was applied when the pen-
nies are later replaced with cubes of different materials.

Explore

In which direction, by how much, and why the water level
changes can be best explored by breaking the problem into
two complementary investigations that are amenable to quan-
titative measurements. For the first query, objects are placed
directly in a water-filled 50-ml beaker, and the change of
water level is measured as a function of the mass of the object.
Measurements are then repeated, recording the change in
water level in a 500-ml outer beaker (“pool”) for these same
objects when they are placed within a 250-ml inner beaker
{“boat”) floating within the 500-ml beaker.

For each investigation two groupings of objects were cho-
sen. The first group of objects were of the same density but
different volumes, which was achieved by using 10, 20, 30,

40, and 50 pennies (all minted after 1982).}! The second em-
ployed objects of the same volume but different densities, us-
ing 16.4-cm’ cubes {Ajax Scientific) of solid aluminum, iron,
copper, brass, nylon, pine, oak, and PVC. Note that the initial
water level in the outer beaker is marked while the inner bea-
ker is floating, empty, in the outer beaker.

Masses of the cubes were obtained using a digital stress-
gauge scale that measured weight. After internally dividing by
gravity, a digital stress-gauge scale (Scales Galore) that mea-
sured weight displayed readings of mass with a resolution of
0.1 g. Mass and volume of the pennies are 2.5 g and 0.35 cm?,
respectively.!! Calibrated beakers allowed for estimates of
the change in the water level. Marked in ml, changes in water
level reflect a change in water volume equal to the volume of
water displaced. Unless given, measurements of the mass and
volume of the pennies and cubes and the associated displaced
water volumes were repeated six times, averaged, and plotted.
Details and recommendations for collecting measurements
and equipment are provided in the online appendix,® where a
table of measurements, and the development of an algebraic
solution for the change in height, can also be found.

Graphing the mass (g) and water volume displacement
(ml) measurements associated with the pennies and cubes
when placed directly in the water and in the floating beaker
provides a powerful avenue of exploration (Fig. 1). Plotted
this way, we find that objects that float, both within a beaker
and by themselves, essentially fall along a straight line [Fig. 1,
regression line (a}] at 45° to the axes. Cubes of equal volume
that sank formed a nearly horizontal line [Fig. 1, regression
line (b)]. The corresponding values for the 10, 20, 30, 40, and
50 pennies at the bottom of the beaker appear on aline be-
neath that for floating objects and with a shallower slope [Fig.
1, regression line {¢)].

Explain
“There is magic in graphs... the profile of a curve
reveals in a flash whole situations. . the curve informs
the mind, awakens the imagination, convinces”
{(Henry Hubbard 1939)

Students are encouraged to find data trends in Fig. 1 and
identify the underlying physical laws that these trends reflect.
In this regard, it will be helpful to recall that 1 ml of water by
definition is equal to 1 cm? of water and has a mass essentially
equal to 1 g.1 Therefore, by decree, water has a density of 1,
ie,1g/1cm?’ or 1 g/l ml Consequently, for any measurement
of mass and displacement of water, it will fall along line (a).

Consider the solid regression line labeled (a) in Fig. 1
characterizing water displacement and mass measurements
of both pennies and cubes that float either by themselves,

e.g., pine and oak cubes, or in the 250-m| beaker (boat). This
line has a slope of 0.99 ml/g and an offset 0.96 ml. Referring
to the original (inner) axis labels, this line reflects, within the
accuracy of our measurements, the simple observation that
the volume of water, measured in ml, displaced by a floating
object, whether by itself or in a container, is equal to the mass
of the object, measured in g.

To better see the underlying physical law that this line
reveals, substitute g for ml on the y-axis in Fig. 1 and multiply
both axes by gravity. The units for both axes (outer axes) now
become that of force, with the present data lying between 0.02
and 2.0 N (Fig. 1). In terms of these units the solid regression
line (a) becomes y = 0.009 + 0.99x, with x and y in N. We find
that the pennies and cubes will float when the buoyant force,
which must equal the object’s weight (x-axis), is equal to the
weight of the water displaced (y-axis), This graphical relation-
ship is a direct manifestation of Archimedes’ principle, which
on a more fundamental level is due to Newtors third law.>*
The weight of the floating object is sustained by the weight of
the displaced water communicated through pressure.3*

Furthermeore, what might the 0.009-N offset imply? In ad-
dition to the buoyancy force, which changes with mass of the
floating object, the offset represents a constant force. Such a
force could arise as a result of surface tension between the in-
ner beaker and the water, which in principle can be detected.*

The dotted regression line (b) through the points for cubes
that sank has a near zero slope, -0.0036 ml/g and an offset of
16.9 ml, with respect to the inner axes. What does this line
reflect? The dotted line shows that the amount of water dis-
placed when the cube is totally submerged is equal to about
16.9 ol and is independent of the mass of the cube. Given that
1 mlis equal to 1 cm?, this offset can be interpreted as
16.9 cm?, which within our limits of uncertainty is close to
16.3 cm?®, the volume of the cube. For the essentially incom-
pressible materials used here, volume is conserved.

Finally, consider the dashed linear regression line {c) in
Fig. 1 that appears below the solid regression line (a). Line (c)
is associated with the sunken pennies. With a slope of
0.145 ml/g, the difference between regression lines (a) and (c)
increases with the mass of the pennies. This divergence means
that the difference in water displacements between when the
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collapse. The alveoli are tiny air sacs in the lungs where
the exchange of oxygen and carbon dioxide takes place.
Their collapse keeps pressurized nitrogen in the lungs
from going into solution at depth, thereby avoiding
nitrogen narcosis or bubbles in the bloed and tissues
during return to the surface.!>16 Less critical but still
important, this reduction in the dolphin’s volume also
results in a reduction in buoyancy. At a depth of 300 m
[Figs. 2(b) and (c)], the collapse of the thoracic cavity is
very pronounced, with a volume now of about 233 ml.
From Fig. 1 line (a) or Archimedes’ principle, this col-
lapse results in a reduction in buoyancy to about 2.3 N, 14
This reduction of buoyancy allows the dolphin to sink so
that it glides further when diving, increasing speed and
saving energy.!” Conversely, rising to the surface, the
dolphin’s thoracic cavity will expand, providing an addi-
tional upward, buoyant force.

Evaluate

With fresh insight, we now return to our original
problem of the anchor tossed from a floating boat into
a pool and ask if the pool’s water level goes down, up, or

Fig. 2. In 1969, the Atlantic bottlenose doiphin Tuffy was trained to dive stays the same. Asthe underlying physical principles are

300 m and press its rostrum to a paddle that activated a camera to take the same, it is exhilarating that we can investigate both
its picture. (a) Tuffy at surface, (b) and (c) Tuffy at 300 m depth; (b) and (c), ’
the first dolphin selfies, revealed a dramatic collapse in its theracic cavity

the direction and corresponding volume change in the

FIR T MR PR - Sy S5 s z ry = T T T—

{signified by dotted circles). {Photo courtesy of the U.5. Navy)

pennies are floating (a) in the 250-ml beaker (beat) or sunk
(b) at the bottom of the 500-ml beaker (pool) will increase
with additional pennies. If these data are replotied with the
displaced volume as the independent variable, the new slope
is 1/[0.145(ml/g)] or 6.90 g/ml, equivalent to 6.90 g/cm?. As
expected, within the accuracy of our measurements, this is
nearly equal to the density of pennies, which is 7.2 g/cm?.

Taking this information together, data points below regres-
sion line (a) correspond to objects that have a density greater
than one. These objects will sink when placed directly in the
water.

Elaborate

Dolphins have to contend with the persistent problem that
their life-giving oxygen is only at the surface but their food is
found at depth. Dolphins are essentially neutrally buoyant at
the surface of the water. This buoyancy is achieved by filling
their lungs with air to a volume of about 7000 ml, '’ nearly the
volume of an NBA official basketball. Extrapolating from Fig,
I [regression line (a)] or by invoking Archimedes’ principle,
we can surmise that the mass, which this volume of displaced
water supports is about 7000 g. The corresponding buoyant
force is approximately 70 N. Partly to mitigate this upward
buoyant force while diving, the dolphin's flexible thorax
(chest) begins to collapse. This collapse is why the image of
the dolphin, Tuffy [Figs. 2(b) and ()}, appears so peculiar;
there is a dramatic reduction of volume of the thorax behind
the left flipper.

This adaptation of the rib cage serves two purposes.
Foremost, it allows the lungs and the alveoli within them to

140 THE PHYSICS TEACHER ¢ Vol. 57, MarcH 2019

pool at our desks with only beakers and pennies. Maore-
over, this same logic can be applied to the launching of a
ship and the rise of the ocean.”

Although the answer can be indirectly surmised from Fig. 1,
let us now be more deliberate in our approach. With the empty
250-ml inner beaker (boat) floating in a water-filled 500-ml
outer beaker {pool}, we arbitrarily choose a reference water
level of about 150 ml [Fig. 3(a)]. Placing 20 pennies (anchor) in
the inner beaker, we observe that the water level on the outer
beaker rises about 50 ml [Fig. 3(b)]. From Fig. 1, regression
line (a), this water displacement corresponds to an upward
buoyant force on the inner beaker of about 0.5 N, equal to the
weight of the 20 pennies, i.e., 50 g/1000 kg * 9.8 m/s? = 0.49 N.
Marking the water level on the outer beaker [Fig. 3(b)], we now
have a desk-size setup of the original puzzle,

When the 20 pennies are transferred from the inner beaker
and placed directly in the water of the 500-ml outer beaker
[Fig. 3(c)], the new water level in the outer beaker is signifi-
cantly lowered. However, relative to our original 150-ml refer-
ence water level, it is about 8 ml higher [Fig. 3(c)], consistent,
within the accuracy allowed, with the 7.0-ml volume of the
20 pennies, i.e., 20 * 0.348 ml = 6.96 ml. Again this water dis-
placement measurement is consistent with the previous data
plotted in Fig, 1 [i.e, line (c)].

Since the total mass of the pennies is proportional to their
number, we deduce from Fig. 1 that jettisoning any number of
pennies from the inner beaker (boat) will result in the water
level in the outer beaker’s (pool) decreasing. Furthermore, the
divergence between the (2) and (c) regression lines in Fig. 1
indicates that increasing the number of dumped pennies will
result in a greater drop in the water level in the outer beaker.
Curiously, although the water level in the outer beaker has




decreased as a consequence of throwing the
pennies overboard [Figs. 3(b) and (c}], the
volume of water within the outer beaker
has not changed. What accounts for the
decrease in water level in the larger beaker?
It is simply the compensating increase in
the water depth beneath the smaller beaker
after the pennies are tossed overboard.
Note, while collecting the sunken penny
measurement data in Fig, 1, line (c), the in-
ner beaker or boat was not included. To get
sufficient resolution for the water displaced
by the submerged pennies and cubes, we
used a 50-ml pool, so including the 250-ml
beaker (boat) was not an option. Neverthe-
less, this situation did not affect our final
conclusion. Aslong as the boat is either

Fig. 3. Deconstructing the celebrated buoyancy problem: (a) establishing a 150-mi
water level reference in the 500-ml beaker with an empty 250-m! beaker present; (b)
water level in 500-ml beaker when 20 pennies are placed in the 250-ml beaker; water
volume displacement is about 50 ml from (a); (c) water level when 20 pennies are sub-
merged; water volume displacement is about 8 ml from (a}. The difference in displaced
water volumes between panels {b) and (c) is 42 ml, which amounts fo a drop in water

always present or always absent, it does not
matter since the displaced water associated
with the boat’s buoyancy does not change,

In summary, how the water level in the outer beaker
changes when the 20 pennies are thrown overboard depends
on whether the displaced water volume, relative to our 150-
ml reference, is greater when the pennies are floating in the
250-ml beaker (50 ml) or when they are at the bottom of the
500-ml beaker (8 ml). Our answer is the difference in water
levels, which corresponds to a net drop of about 42 ml and
is consistent with the difference we find between regression
lines (a) and (c} in Fig. 1 for a mass of 50 g, the mass of the
pennies. The great power of the graphs in Fig, 1 is that for
any number of pernmies (albeit minted after 1982), one can
calculate the change in water level in the 500-ml outside bea-
ker (pool} when the pennies {anchor) are dumped out of the
inner beaker (boat).

Students should be able to continue this line of reasoning
for any number of pennies dumped in a 250-ml outer beaker
using Fig. 1. For example, for 100 pennies, or 250 g, the ex-
trapolated regression line for (a) yields 100.15 ml, and for (b)
equals 14.61, the difference equaling 85.52 ml.
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