
SPOT App
Syntax-Prosody in OT

Jenny Bellik & Nick Kalivoda, UC Santa Cruz
October 7, 2018 @ the Annual Meeting on Phonology

SPOT interface:
https://people.ucsc.edu/~jbellik/research/spot/interface1.html

https://people.ucsc.edu/~jbellik/research/spot/interface1.html

Thanks to

Ozan Bellik
(Collaborator)

Armin Mester
(Mentor)

Junko Ito
(Mentor)

Welcome to the SPOT tutorial

To follow along, please visit the links posted on the SPOT
tutorial page on the AMP2018 website:
http://phonology.ucsd.edu/program/sunday/spot-tutorial/

● Interface:
people.ucsc.edu/~jbellik/research/spot/interface1.html

● Codebase: github.com/syntax-prosody-ot

http://phonology.ucsd.edu/program/sunday/spot-tutorial/
https://people.ucsc.edu/~jbellik/research/spot/interface1.html
http://www.github.com/syntax-prosody-ot

Why a syntax-prosody app?

In Optimality Theory (Prince & Smolensky 1993), the winning
output is supposed to be optimal

● amongst all the outputs of GEN

● as evaluated by CON.

Why a syntax-prosody app?

In syntax-prosody mapping:

● Both inputs and outputs are
tree structures.

● Outputs proliferate!

Why a syntax-prosody app?

Why a syntax-prosody app?

● Automatically {generate, evaluate} the thousands of
output candidates

● Existing automatic candidate generation/evaluation
software cannot handle tree structures of arbitrary
depth

● That’s why we built SPOT!

This workshop

● Introduce the SPOT application
● Demonstrate how to use the GUI
● Work through examples that use JavaScript directly

○ Phrasing in Kinyambo, Japanese, Italian

SPOT application

SPOT is an open-source JavaScript application in
development since 2014 that automates all three
components of an OT system (GEN, EVAL, CON).

● Online GUI
● Source code available on Github

Using the GUI

1. Navigate to
https://people.ucsc.edu/~jbellik/research/spot/interface
1.html

2. Choose constraints by clicking on checkboxes
3. Build your input syntactic tree
4. Select parameters for GEN
5. Click “Submit” and scroll down for a tableau

Go ahead, try it out!

https://people.ucsc.edu/~jbellik/research/spot/interface1.html
https://people.ucsc.edu/~jbellik/research/spot/interface1.html

Kinyambo

In Kinyambo, High Tone Deletion (1) diagnoses the
φ-boundaries in (2) (Bickmore 1989, 1990).

(1) H → ∅ / (φ . . . (ω . . .__ . . .) (ω . . . H . . .) . . .)

(2) a. (φ abakozi bákajúna)
‘the workers helped’

b. (φ abakozi bakúru) (φ bákajúna)
‘the mature workers helped’

Kinyambo

● Suppose I want to try to capture these phrasings in
Match Theory (cf. Bellik & Kalivoda 2015), with
CON = {MatchSP-XP, MatchPS-φ, BinMin, BinMax}

● To generate the four tableaux at left, I could manually
create them one by one in the GUI

Kinyambo

Then I can copy/paste the results into one big .csv tableau:

Kinyambo

● But can’t we automate that kind of repetitious work?!
● We can, and we did!

https://github.com/syntax-prosody-ot/main/blob/master
/tutorials/AMP2018_kinyambo_example.html

● But such automation requires going beyond the GUI.

https://github.com/syntax-prosody-ot/main/blob/master/tutorials/AMP2018_kinyambo_example.html
https://github.com/syntax-prosody-ot/main/blob/master/tutorials/AMP2018_kinyambo_example.html

Beyond the GUI

● To use SPOT outside the GUI, you’ll need to download
the codebase.

● Go to the SPOT Github website:
https://github.com/syntax-prosody-ot/main

● Click on the green “Clone or Download” button, then on
“Download ZIP”

○ Git users can also clone the repository, make their own branch, etc.

○ Email us if you are interested in collaborating via Github to work on

SPOT!

https://github.com/syntax-prosody-ot/main

Beyond the GUI

● After downloading, unzip the file and open “main-master”
● Now you have a local copy of the entire SPOT codebase

on your computer!
● No further installation is necessary—every browser

already has JavaScript and html.

Kinyambo

To automatically generate the Kinyambo master tableau,
open: main/tutorials/AMP2018_kinyambo_example.html

● Right-click and open with a text editor (ex. Notepad,
TextEdit) to view and edit the code

● Double-click to open in the browser and see it execute

More options: Recursion

● The actual prosodic structures in Kinyambo do not
involve any recursion — they conform to Strict Layering

● But recursive prosodic structures are also possible (Ito &
Mester 2003)

● These can be generated in SPOT by turning off the GEN
option obeysNonRecursivity

● Let’s see an example from Japanese:
main/tutorials/AMP2018_japanese_example.html

Japanese based on Ito & Mester (2013, 2017)

Left-branching syntax: [[[α]β]γ]:

(3) [[[U]U]U] → ((U U) U)
(4) [[[U]A]A] → ((U A) (A))
(5) [[[U]A]U] → ((U A) (U))
(6) [[[U]U]A] → ((U U) (A))
(7) [[[A]A]A] → (((A) (A)) (A))
(8) [[[A]A]U] → (((A) (A)) (U))
(9) [[[A]U]A] → (((A) (U)) (A))

(10) [[[A]U]U] → (((A) (U)) (U))

Japanese based on Ito & Mester (2013, 2017)

To summarize:

(11) [[[U]U]U] → ((ω ω) ω)

(12) [[[U]A]A] → ((ω ω) (ω))
[[[U]A]U]
[[[U]U]A]

(13) [[[A]X]Y] → (((ω) (ω)) (ω))

Japanese based on Ito & Mester (2013, 2017)

● CON = {MatchSP-XP
Max

, MatchSP-φ, MatchSP-XP
Non-Unary

,
MatchPS-φ

NonUnary
, MatchPS-φ, BinMinBranches-φ,

BinMax
Branches

-φ, BinMax
2Words

-φ, EqualSisters
Adj

-φ,
EqualSisters

Adj
2-φ, AccentAsHead-φ, NoLapseL}

main/tutorials/AMP2018_japanese_example.html

More options: Clitics

● So far we’ve been assuming that every syntactic word
maps to a prosodic word

● What about clitics?
● In Japanese, we had the clitic -no, which we ignored by

placing inside the ω of its host:

(14) amerika-no tomodachi-no pasokon
 America-GEN friend-GEN computer
 'my American friend's computer'

More options: Clitics

● Problem: What if you want to generate prosodic trees in
which some syntactic terminals are not mapped to
prosodic words?

● Solution: When building the syntactic tree, set the
category of a desired clitic to “clitic” rather than “x0”

○ The clitic will receive the prosodic category “syll” (syllable).

○ It won’t count for prosodic constraints that look for ω
○ It also won’t count for mapping constraints that look for X0

● Let’s illustrate with Italian.

Italian based on Van Handel (2018)

● Function words in Italian, like P0 per in (15), are generally
clitics: lower on the PH than ω or φ.

● Troncamento: deletion of word-final unstressed mid
vowels after sonorants; sensitive to φ-boundaries

(15) a. per poter_ capire
b. ? per potere capire
 ‘in order to be able to understand’

● How can we represent this in SPOT?
main/tutorials/AMP2018_italian_clitic_example.html

Beyond the GUI

● Any of the html files in the tutorials folder can be adapted
for your own analysis. (Just change the trees &
constraints appropriately.)

● What if you also want to compare constraint sets?
○ Ex. You want to see what typologies a Match system vs an Align

system generate for a set of several syntactic inputs.

● We have a template for this -- you don’t need to write
your own JavaScript!

Customizing the template

● To make your own custom analysis with JavaScript, find
SPOT_custom_analysis_template.html in the main SPOT
directory.

● Right-click and open it in the text or html editor of your
choice

○ *not* with the browser -- that is for displaying, not editing

○ Some basic text editors: Notepad, Notepad++ (Windows); Xcode,

TextEdit, TextMate (Mac)

Customizing the template

1. Edit YOUR_TREES_HERE.js or make your own tree file
2. Adjust the names of the trees in sTreeList (line 37)
3. Put in the constraint set(s) you want to use

a. Examples are conMatch (line 40) and conAlign (line 41)

b. All constraint set names must be listed under conNames (line 45)

4. If desired:
a. Adjust GEN options on line 48.

b. To display tableaux in the browser, delete the // before lines

70-72.

c. Create a custom constraint by filling in line 17 & include its name in

one or more of your constraint sets.

Customizing the template

● When finished, double-click on the html file to open it in
the browser and view or download results.

● If it’s not working right, open the JS console to show
errors.

○ Ignore the “No spot form” message.

● If you revise the html file in your text editor, reload the
page in the browser to update.

Questions?

Thank you!

Please email us if any issues come up when you’re using SPOT,
or if you think of a feature you’d like to use!
Jenny: jbellik@ucsc.edu, Nick: nkalivod@ucsc.edu

mailto:jbellik@ucsc.edu
mailto:nkalivod@ucsc.edu

References
Bellik, Jennifer & Nick Kalivoda. 2016. Adjunction and Branching Effects in Syntax-Prosody Mapping. Hansson,
G.O., Farris-Trimble, A., McMullin, K., & D. Pulleyblank. 2015. Supplemental Proceedings of the 2015 Annual
Meeting on Phonology.
Bickmore, Lee. 1989. Kinyambo Prosody. Ph.D. thesis, UCLA.
— 1990. Branching Nodes and Prosodic Categories. In S. Inkelas & D. Zec (eds.) The Phonology-Syntax
Connection.
Ito, Junko & Armin Mester. 2003. Weak Layering and Word Binarity. In Honma, T., M. Okazaki, T. Tabata, & S.
Tanaka (eds.), A New Century of Phonology and Phonological Theory: A Festschrift for Professor Shosuke Haraguchi on
the occasion of his sixtieth birthday, pp. 26-65. Kaitakusha, Tokyo.
— 2013. Prosodic subcategories in Japanese. Lingua 124, 20-40.
Meinschaefer, Judith. (2005). The prosodic domain of Italian troncamento is not the clitic group.
Meinschaefer, Judith. (2009) Lexical exceptionality in Florentine Italian troncamento. In C. Féry, F. Kügler & R.
van de Vijver (eds.), Variation and Gradience in Phonetics and Phonology Vol. 14 (pp. 223-252). Walter de Gruyter.
Prince, Alan & Paul Smolensky. 1993/2004. Optimality Theory: Constraint Interaction in Generative Grammar.
Blackwell Publishing.
Truckenbrodt, Hubert. 1995. Phonological phrases: Their relation to syntax, focus, and prominence. MIT
dissertation.
— 1999. On the relation between syntactic phrases and phonological phrases. Linguistic Inquiry 30(2). 219-255.
Van Handel, Nick. 2018. Italian troncamento in Match Theory. Handout.

