Binarity, branchingness, and size effects Jennifer Bellik (jbellik@ucsc.edu) & Nick Kalivoda (<u>nkalivod@ucsc.edu</u>)

Introduction

- In prosody, longer strings tend to be parsed into more constituents.
- Ex. two feet in (abra)ka(dabra) but one foot in sha(zam)
- Such size effects are commonly captured using BINARITY constraints (e.g., Inkelas & Zec 1990, Ito & Mester 1992, Prince & Smolensky 1993/2004; Sandalo & Truckenbrodt 2002, Prieto 2007, Selkirk 2011, Elfner 2012).
- Implementations of BINARITY come in two major flavors, which often aren't distinguished:
 - **Branch-counting BINARITY** (formalized in [1]) requires a node to branch into two children (of any category), and echoes syntactic notions of binarity. • Leaf-counting BINARITY (formalized in [2]) reflects a rhythmic conception of binarity, derived from foot-building. It requires a node to contain two dominated nodes of some particular category (e.g. σ), and sometimes lower categories.
- (1) BINARITY-BRANCHES(K) = BIN-BR(K): Assign a violation for every node of category K with more than two branches (immediate children, of any category).
- (2) BINARITY-LEAVES(K,L) = BIN-LV(K, L): Assign a violation for every node of category K that dominates more than two nodes of category L at any level, where L< K.

Big question: Are both versions of BINARITY necessary and desirable for understanding the syntax-prosody interface?

Proposal:

- Binarity in prosody is best conceived of as counting branches, regardless of category.
- Category-sensitive leaf-counting binarity should be restricted to counting rhythmic categories.

Binarity under Weak vs. Strict Layering Under Strict Layering: No difference between branch- and leaf-counting

- In structures that conform to Strict Layering (Selkirk 1984), no level-skipping (non-exhaustive parsing) or level-doubling (recursion) is permitted.
- Therefore, every branch in a Strictly Layered tree corresponds to a child of the next lower prosodic category, and counting branches is equivalent to counting leaves of the next lower prosodic category.
- Ex. Strictly Layered (3a,d) incur the same violations under branch- and leaf-counting binarity
- So in effect, branch-counting binarity is already employed in analyses with Strict Layering, such as Shih (2017), Prieto (2007), and Sandalo & Truckenbrodt (2002), even when the analysis defines binarity in leaf-counting terms.

Under Weak Layering: Branch-counting and leaf-counting pull apart

- Weak Layering (Ito & Mester 1992/2003) permits recursion (3c) and level skipping (3b)
- As a result, not every branch corresponds to a child of the next lower prosodic category.
- Recursion produces children of the same category as the parent
- Non-exhaustive parsing produces children of an even lower prosodic category
- Ex.: in (3c), ϕ_1 has only two branches (to ϕ_2 and ϕ_3) and satisfies BIN-BR, but ϕ_1 violates Bin-Lv since it dominates four leaves ($\omega_1, \omega_2, \omega_3, \omega_4$).

(3) Constraint comparison

 $\begin{bmatrix} \mathsf{XP} \ \mathsf{X}_1 \ \mathsf{[XP} \ \mathsf{X}_2 \ \mathsf{[XP} \ \mathsf{X}_3 \ \mathsf{X}_4 \]]] \end{bmatrix} \quad \mathsf{BIN}(\varphi, \mathsf{B})$

Selected References. Bellik, J. & N. Kalivoda. 2016. Adjunction and Branchingness Effects in Syntax-Prosody Mapping. In Hansson, G.O., A Farris-Trimble, K. McMullin, & D. Pulleyblank (eds.), Supplemental Proceedings of the 2015 Annual Meeting on Phonology. Elfner, E. 2012. Syntax-Prosody Interactions in Irish. University of Massachusetts -Amherst dissertation. Ito, J. & A. Mester. 1992/2003. Weak Layering and Word Binarity. Linguistic Research Center, LRC-92-09, University of California, Santa Cruz. — 2013. Prosodic subcategories in Japanese. Lingua 124, pp. 20-40. — 2015. The perfect prosodic word in Danish. Nordic Journal of Linguistics, Vol. 38, No. 1, pp. 5-36. Kalivoda, N. 2018. Syntax-Prosody Mismatches in Optimality Theory. Ph.D. Thesis, UC Santa Cruz. Prince, A. & P. Smolensky. 1993/2004. Optimality Theory: Constraint Interaction in Generative Grammar. Selkirk, E. 1984. Phonology and Syntax: The Relation between Sound and Structure. MIT Press. — 2011. The syntax-phonology interface. In J. Goldsmith, J. Riggle & A. Yu (eds.) The Handbook of Phonological Theory, 2nd edition.

R)	$BIN(arphi,\omega)$	Layering
		strict
		weak (*Ехн)
	$arphi_1$	weak (*NonRec)
	arphi	strict

Branch-counting motivates size-driven recursion

Branch-counting binarity (1) assigns a violation to nodes that branch into more than two immediate children. Therefore, it prefers candidates with more prosodic structure. Case study 1: Size-effects in Danish compound words

• Danish glottal accent ('stød') diagnoses the right edge of a prosodic word in Danish • Stød reveals length-driven differences in compound phrasing (Ito & Mester 2015):

- (4) a. [$_{\omega}$ to g [$_{\omega}$ passage:?r]] 'train passenger' b. [$_{\omega}$ [$_{\omega}$ passage:?r] [$_{\omega}$ to r?g]] 'pass. train'
- These size effects can be derived with the ranking BIN-BR >> NONREC >> MATCH (5).
- **NonRec**URSIVITY penalizes recursive ωs and outranks MATCH, ruling out the isomorphic (4b) and favoring flat structures like (4c).
- **BIN-BR** compels the building of a recursive ω (4a) when a flat structure would create a ω with more than two branches (4c).
- Leaf-counting **BIN**(ω ,**FT**) would not have the same effect: the maximal ω still dominates three feet even when recursive sub-structure intervenes.

Case study 2: Size-effects in Irish phrasing In Irish, LH shows the left boundary of ϕ_{NonMin} , and HL shows the right boundary of ϕ (from Elfner 2012). This phrasing is governed by the constraint ranking in (6) (Elfner 2012).

- $[_{\Sigma P}V[_{TP}[_{NP}N][_{VP}[_{NP}NA]]]] \rightarrow (_{\omega}(_{\omega}VN)(_{\omega}NA))$
- Elfner attributes this to **STRONGSTART** (Selkirk 2011), which penalizes ($_{\phi} \omega \phi ...$) structures, and outranks Match.
- But STRONGSTART violations are tolerated in order to avoid **BIN-BR** violations (6).
- To avoid a binarity violation in winner (6a), binarity must be assessed by counting branches for ϕ_1 .
- (6a)'s ϕ_1 , which dominates five ω s, still violates leaf-counting **BIN-** ω , but is binary branching.

Similar examples are found in Kimatuumbi (Kalivoda 2018) and Mandarin (Shih 2017). **Upshot**: Only branch-counting motivates size-effects and a closer syntax-prosody match.

Leaf-counting motivates size-driven category change

Leaf-counting binarity counts dominated nodes of a lower prosodic category (cf. Dresher & van der Hulst 1998), and can motivate a size-driven change of category. • In (3a,b), the violation of leaf-counting BIN-LV(φ,ω) is avoided by punting the binarity

- violation up to the level of I, so that (3a,b) outperform their counterparts (3c,d). • Unlike BIN-LV, BIN-BR does not favor the level-skipping (3b) over (3a,c)--it doesn't
- motivate a category change for the root prosodic node. • The case study shown below, where Ft- and σ -counting BIN-LV promotes ω to φ , is the only instance of such a category change known to us.

Case study: Japanese compound phrasing Category-promotion can be seen in Japanese compounds (Ito & Mester 2013).

- Compounds consisting of no more than two feet are parsed into a prosodic structure rooted in ω (as diagnosed by ω -internal rendaku voicing, compound accent, etc.)
- But in compounds of the form [[Ft][σ Ft]], the category of the root node changes to ϕ instead (7a), so that no ω dominates more than two feet or syllables.
- This category-change is driven by leaf-counting binarity (BIN-LV(ω , [Ft, σ])): each ω can dominate only up to two nodes of lower prosodic categories.

• Branch-counting binarity can't drive this category-change—both (7a,b) satisfy BIN-BR. If category-promotion when only occurs when rhythmic categories, not interface categories, are counted, then CON should only include versions of BIN-LV that count feet and syllables, not ω or φ (i.e., BIN-LV(ω , [Ft, σ]), but not BIN-LV(φ , ω) or BIN-LV(I, φ))

(5) Tableau for Danish 'train passenger'

toːg] [_{X⁰} passageːr]]	BIN-BR	NONREC	MATCH	BIN(ω ,FT)
$ \begin{array}{c} \omega \\ \hline $		*	*	*
ω Ft Ft Ft px ² g passa gex ² r		**!		*
Ft Ft Ft Dig passa ge i [?] r	*!		**	*
	1			

(6) *Tableau for Irish* (Elfner 2012)

$[\Sigma P V [TP [DP NS AS] [VP [DP NO AO]]]]$	DIN-DR	5151	MAICH	DIN- ω
$\mathbf{a.} \rightarrow \begin{array}{c} \varphi_{1} \\ \varphi_{2} \\ \varphi_{3} \\ \varphi_{4} \\ \nabla \mathbf{N}_{S} \mathbf{A}_{S} \mathbf{N}_{O} \mathbf{A}_{O} \end{array}$		$arphi_1$		$arphi_1,arphi_2$
$\begin{array}{c} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \varphi_4 \\$		$\varphi_1!, \varphi_2$	TP, DP _S	$arphi_1,arphi_2$
$\begin{array}{c c} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \hline \\ V \\ N_S \\ A_S \\ N_O \\ A_O \end{array}$	$arphi_2!$		TP, DP _S	$arphi_1,arphi_2$

(7) Tableau for Japanese compound

Leaf-counting's undesirable typological predictions

Typologies are larger under leaf-counting binarity. In a case study of Kinyambo phrasing, leaf-counting systems predicted typologies that were, on average, 80% larger than branch-counting typologies, with an average of 10.67 more languages (Bellik & Kalivoda 2016).

(8) Number of languages in Bellik & Kalivoda (2016) typologies (4 inputs from Kinyambo)

	Pair 1	Pair 2	Pair 3	Pair 4	Pair 5	Pair 6
	(Match, low)	(Align, low)	(Match, high)	(Align, high)	(Match, high & low)	(Match, high & low)
BIN-LV Igs	19	40	17	30	15	28
BIN-BR Igs	17	15	18	12	11	12
Br - Lv	2	25	-1	18	4	16
((Br - Lv)/ Br)	(12%)	(167%)	(-5%)	(150%)	(36%)	(133%)

our knowledge, this is un attested. (9)

 \rightarrow

Further disadvantages of leaf-counting binarity Leaf-counting binarity is usually redundant, even under Weak Layering

bcď

XP

Leaf-counting is more computationally complex. Branch-counting only examines a node's immediate children—a local search. But leaf-counting requires a global search through theoretically unbounded levels of recursion for all nodes of some lower category.

Conclusion

Branch-counting and leaf-counting versions of binarity differ significantly in their predictions: • **Size effects**: Branch-counting motivates size-driven recursion or splitting, deriving the desired size effects. Leaf-counting cannot predict such size effects.

- only attested for ω being promoted to φ .

Furthermore, leaf-counting is almost always redundant. CON and the size of predicted typologies could be constrained by restricting BIN-LV to counting rhythmic categories (σ , Ft), while allowing branch-counting binarity to apply at all levels of the prosodic hierarchy.

UC SANTA CRUZ

Leaf-counting binarity predicts a language that completely disregards syntax. • If BIN-LV were top-ranked, syntaxes like [a [b [c [d]]], [[ab][cd]] and [[[[a] b] c] d] would all be optimally parsed as ((, (, a b) (, c d)). Note the mapping of the top XP to i, not φ . To

In Japanese, [[[[a] b] c] d] \rightarrow ($_{\alpha}$ ($_{\alpha}$ a b) ($_{\alpha}$ c d)) (Kubozono 1989). However, this is not the same as $((_{\alpha} ab) (_{\alpha} cd))$ above, since there is a φ containing a, b, c, d. This 4-leaved φ violates Bin-Lv, so this is not an argument in favor of BIN-Lv per se (Kalivoda 2018). • In contrast, BIN-BR never compels syntax-prosody mismatches since the syntactic input

• Leaf-counting is only essential if it rules out an intended loser that does *not* violate branch-counting. Call such phrasings that violate BIN-LV but not BIN-BR leaf-violators. • Most leaf-violators can be ruled out by other prosodic well-formedness constraints. For all phrasings of three words (generated using SPOT [Bellik, Bellik & Kalivoda 2018]), all leaf-violators incurred additional penalties from STRONGSTART, EQUALSISTERS, or NONRECURSIVITY, compared to all non-leaf-violating possible optima.

• Category change: Leaf-counting does motivate size-driven category change, which is

• **Typology**: Branch-counting predicts smaller typologies than leaf-counting, and leaf-counting predicts a language we believe to be unattested.