

Analyzing Nanjing Tones and Sandhi: statistical modelling methods

Si Chen, Caroline Wiltshire, Bin Li, & Ratree Wayland

THE QUESTIONS:

Major issues in documenting/analyzing a tone language:

1) what is the tone inventory?

2) what are the tone sandhi rules?

(& disentangle from tonal coarticulation)

Modelling underlying pitch targets can answer both.

INTRODUCTION

A.Nanjing Dialect

- Nanjing city, Jiangsu Province, east coast of China.
- Population over 5.3 million
- Hongchao subgroup within Jianghuai dialects.

B. Nanjing Tone Descriptions

Tone	Syllable	Liu (1995)	Sun (2003)	Meaning
T1	/fu/	41	31	'skin'
T2	/fu/	24	13	'hold'
Т3	/fu/	11	22/212	'rotten'
Τ4	/fu/	44	44	'negative'
T5	/fu/	5	55	'fortune'

Liu (1995)Sun (2003) $T1 \rightarrow T4/_T1 (41 \rightarrow 44/_41)$ $T1 \rightarrow T4/_T1 (31 \rightarrow 44/_31)$ $T2 \rightarrow T3/_T5 (24 \rightarrow 11/_5)$ $T2 \rightarrow T3/_T5 (13 \rightarrow 22/_5)$ $T3 \rightarrow T2/_T1 (11 \rightarrow 24/_41)$ $T3 \rightarrow T2/_T1 (22 \rightarrow 13/_31)$ $T3 \rightarrow T2/_T3 (11 \rightarrow 24/_11)$ $T3 \rightarrow T1/_T3 (22 \rightarrow 31/_22)$ $T4 \rightarrow T1/_T5 (44 \rightarrow 41/_5)$ None $T5 \rightarrow 33/_T5 (5 \rightarrow 33/_5)$ $T5 \rightarrow T4/_T5 (5 \rightarrow 44/_5)$

C. Purposes of Study

 Determine inventory/sandhi rules based on acoustic data using statistical modelling

METHODS

Participants & Stimulus Materials

- 12 native speakers of Nanjing (6F/6M), age 35-65
- 660 mono-σ tones (11 σs*5 tones*12 speakers), 360 di-σ tones (5 di-σs*6 combos*12 speakers).
- Real words; most chosen from Liu (1995)

Measurement and Normalization

- Digital recording, sampling rate 44.1kHz.
- Praat script extracted time-normalized F0 values, 20 time points in each V, 25.6ms analysis window.
- Logarithmic Z-score normalization on F0 values (Rose 1987; Zhu 1999)

STATISTIC MODELS & RESULTS

A. Modelling

- Underlying pitch targets (UPTs) are 'the smallest articulatorially operable units associated with linguistically functional pitch units such as tone and pitch accent' (Xu & Wang, 2001:321).
- Prom-On, Xu & Thipakorn (2009) offer a quantitative target approximation model.
- Chen et al. (2017) show this model can distinguish gradient, phonetic perturbation from categorical, phonologized changes.
- **B. Results: Citation Tones**
- To transform F0 to Chao numbers: build on previous methods (Shi 1990; Zhu, Shi & Wei 2012), but use UPTs.
- Calculate sample quantiles for all fitted values of mono-o tones; find cut-off values for each
- Transform from fitted F0 value to integer from 1-5. a: Fitted and mean values of T1 b: Fitted and mean values of T2

Fitted (solid) and mean (dotted) values of Nanjing T1-T5; fitted values are from the optimal model for each tone.

- Four tones best modelled by linear underlying target, but T2 requires quadratic term.
- Cut-off values corresponding to each quantile: 20%: -0.90; 40%: -0.02; 60%: 0.39; 80%: 0.97.

Tone	Initial F0, normalized (Chao's #)	Final F0, normalized (Chao's #)	Values in literature	Our Tone values
1	0.65 (4)	-0.82 (2)	31/41	42
2	-0.85 (2)	0.94 (4)	24/13	24
3	-0.94 (1)	-1.59 (1)	22/212/11	11
4	0.45 (4)	0.15 (3)	44	43
5	1.08 (5)	1.31 (5)	5/55	55

STATISTIC MODELS & RESULTS, CONT.

- C. Results: Sandhi
- Compare UPTs of tone in sandhi position to potential tone it turns into in same di-syllabic context.

CityU

- Fit optimal model to obtain coefficients of UPTs for each speaker; compare UPT of each tone in sandhi position to that of citation tone in that position
- Non-significant difference in the coefficients is taken as evidence of neutralized sandhi tones.

Note: label T41a means T4 when it's first in a T4+ T1 sequence

- The UPT of T3 before T3 neutralized with that of citation T2 (Liu 1995), not that of T1 (Sun 2003).
- Modelling supports Sun (2003)'s proposed T5 → T4/ T5; UPTs of T4 and T5 neutralize before T5.

Our Sandhi rules	Sun (2003)	Liu (1995)			
T1→T4/_T1 (42→43/_42)	T1→T4/_T1 (31→44/_31)	T1→T4/_T1 (41→44/_41)			
T2→T3/_T5 (24→11/_5)	T2→T3/_T5 (13→22/_5)	T2→T3/_T5 (24→11/_5)			
T3→T2/_T1 (11→24/_42)	T3→T2/_T1 (22→13/_31)	T3→T2/_T1 (11→24/_41)			
T3→T2/_T3 (11→24/_11)	T3→T1/_T3 (22→31/_22)	T3→T2/_T3 (11→24/_11)			
T4→T1/_T5 (43→42/_5)	None	T4→T1/_T5 (44→41/ 5)			
T5→T4/_T5 (5→43/_5)	T5→T4/_T5 (5→44/_5)	T5→3/_T5 (5→3/_5)			

CONCLUSIONS

- We apply statistical techniques to Nanjing data to resolve discrepancies in earlier accounts of its tones & sandhi
- We show that statistically testing underlying pitch targets reveals the categorical nature of tone sandhi.
- Acoustic studies involving statistical testing and modelling of UPTs can provide a quantitative basis for a more precise transcription of tones and sandhi, and
- These techniques can be applied to any undocumented or understudied language to provide a tonal analysis based on productions by the speech community.

Selected References

- Chen, S., C. Zhang, A. McCollum, & R. Wayland. 2017. Statistical modelling of phonetic and phonologised perturbation effects in tonal and non-tonal Languages. Speech Communication 88, 17-38.
- Li, Q., & Y. Chen. 2016. An acoustic study of contextual tonal variation in Tianjin Mandarin. *Journal of Phonetics* 54, 123 – 150. Liu, D.Q. 1995. Nanjing Fangyan Cidian (A dictionary of the Nanjing
- Dialect). Nanjing Jiangsu Education Publisher. Liu, D. Q. 1997. Nanjing Dialect Phonetic Profile. Shanghai: Shanghai Education Publisher.
- Prom-On, S., Y. Xu, & B. Thipakorn. 2009. Modeling tone and intonation in Mandarin and English as a process of target approximation. JASA 125(1) 405 – 424
- Song, Y.D. 2006. Nanjing Fangyan Shengdiao Shiyan Yanjiu. (The acoustic study of tones in Nanjing dialect). Master's thesis, Nanjing Normal University, Nanjing.
- Sun, H.X. 2003. Nanjing fangyan shengdiao de ruogan wenti. (A discussion on the tones of Nanjing dialect). Journal of Nanjing Xiaozhuang College, 1, 34 – 40.
- Xu, C.,M. Liu, C. Zhang, S. An, W. Yu & J.M. Chen. 2007. The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. *Landscape Ecology* 22, 925-937.

FURTHER DETAILS ON MODEL & STATISTICS

- Prom-On et al. (2009) argue control of vocal fold tension reflects two antagonistic forces (activation of cricothyroid & thyroarytenoid muscles); should be modeled as 2nd order linear system at least.
- Following Chen et al. (2017), we used a critically damped linear
- system and considered only 2nd and 3rd order linear systems. The optimized model was chosen from the following two models: 1) Second order linear system with linear underlying targets *at* + *b*
- f) Second order integrity system with integrity indentifying targets at + b $f_0(t) = \beta e^{-\lambda t} + at + b$

where $f_0(t)$ stands for f0 values and λ the rate of approaching the UPT; *a* is the slope of the UPT, and *b* is its intercept.

2) Third order linear system with linear underlying targets at + b $f_o(t) = (c_1 + c_2 t + c_3 t^2)e^{-\lambda t} + at + b$

$$c_1 = f_2(0) - b$$

 $c_2 = f'_0(0) + c_1\lambda - m$

 $c_2 = (f''_0(0) + 2c_2\lambda - 2c_1\lambda^2)/2$

where $f_0(t)$ stands for f0 values, λ the rate of approximating the UPT, a the slope of the UPT, b its intercept, c_r, c_2 and c_3 are transient coefficients determined by initial f0 values, velocity and acceleration.

Model with the least Akaike's Information Criterion (AIC) chosen as optimal, as least AIC indicates best fit (Kim & Timm, 2006).

- For each tone, used nonlinear regression to fit the four models to find optimal one and to calculate coefficients of UPTs from f0 values extracted from our speech production data.
- Used non-parametric Wilcoxon signed rank test to determine whether obtained coefficients of UPTs of tones were significantly different.

QUESTIONS OR COMMENTS:

E-mail: sarahchen@polyu.edu.hk or wiltshir@ufl.edu