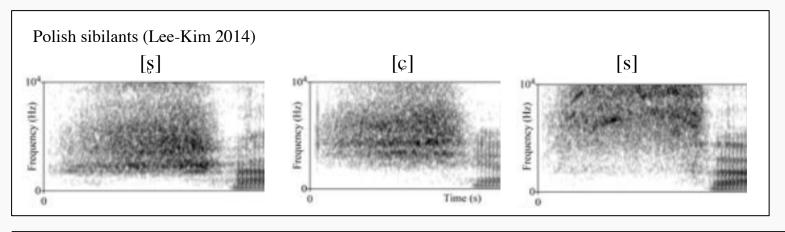
Systemic Markedness in Sibilant Inventories

Edward Flemming (flemming@mit.edu) Massachusetts Institute of Technology

12

Place contrasts among sibilant fricatives

• [s] dental/alveolar, [c] alveolopalatal, [f] palatoalveolar, [s] retroflex


S	Ç	ſ	Ş	attested?	examples
\checkmark	\checkmark			yes*	Japanese, Forest Nenets, Cavineña, Irish
\checkmark		\checkmark		yes	English, French, German, Khasi, Malay, Aymara
\checkmark			\checkmark	yes	Mazatec, Papago, Serbo-Croatian dialects, Slovak
\checkmark	\checkmark		\checkmark	yes	Mandarin, Polish, Telugu, Malayalam, Naxi
\checkmark		\checkmark	\checkmark	yes	Burushaski, Hmong, Jacaltec, Tulu, Acoma
\checkmark	\checkmark	\checkmark		no	-
\checkmark	\checkmark	\checkmark	\checkmark	yes	NW Caucasian

*Only where [c] patterns as the palatalized counterpart of [s] in a broader set of palatalization contrasts (e.g. $[p, p^j], [t, t^j]$)

- These restrictions on sibilant place inventories cannot be accounted for in terms of fixed rankings of standard markedness constraints because different implicational universals hold in inventories with two vs. three sibilant places
- > They can be derived using constraints that penalize perceptually indistinct contrasts (Flemming 2004, 2017).
- > Maximizing the distinctiveness of contrasts leads to different preferences when two vs. three sibilants are involved.
- Survey builds on Padgett & Zygis (2007), Zygis & Padgett (2010), using the PHOIBLE database (Moran et al 2014)
- Descriptions must be interpreted carefully, preferably based on phonetic data.
- PHOIBLE contains three languages described as having [s, c, \int] inventories:
- Chuvash (Kruger 1961 via UPSID) Other sources and analysis of recordings indicate inventory is [s, c, s].
- Tehuelche (Gerzenstein 1968 via UPSID). Gerzenstein actually posits [s, [, s] or [s, c, s]. Other sources indicate that the inventory is [s, f] (e.g. Fernández-Garay 2007) or [s, s] (e.g. Viegas Barros 2009) with allophonic variation of /s/.
- Bandjoun/Bamileke-Ghomálá Nissim (1981) actually describes an [s, (t)] inventory, with [s] as a free variant of [t[] in some contexts.

Elements of the analysis

- Preference for perceptually distinct contrasts:
- MINDIST = d: penalizes contrasting sounds that are separated by a perceptual distance less than d
- Effort constraints: $*c/s >> * \int >> *s$ (cf. Padgett & Zygis 2007)
- MAXIMIZE CONTRASTS favors larger inventories

Fernandez Garay, A. (2007) Sistemas sintácticos en Tehuelche. IJAL 73, 114-125. Gerzenstein, A. (1968) Fonologia de la lengua Gununa-kena. Universidad de Buenos Aires. Guillaume, A. (2008) A Grammar of Cavineña. De Gruyter Mouton. Jongman, A., Wayland, R., Wong, S. (2000) Acoustic characteristics of English fricatives. JASA 108, 1252-63. Kochetov, A. (2017) Acoustics of Russian voiceless sibilant fricatives. JIPA 47, 321-348. Kruger, J.R. (1961) Chuvash Manual. Indiana University Press.

Perceptual space of possible sibilants

- Primary dimensions (Zygis & Padgett 2010):
- \succ F2 transitions
- (Bark) \blacktriangleright Frequency of spectral peak \cong (quantified by spectral Center of Gravity (CoG))

15

- Ranges of dimensions based on studies of Japanese (Li et al 2009), Mandarin (Lee-Kim 2011), Polish (Nowak 2006, Zygis & Hamann 2003), Russian (Kochetov 2017) and English (Jongman et al 2000) sibilants, and on general articulatory considerations.
- Perceptual distinctiveness of a contrast is the weighted distance between contrasting sounds in this space:

$$d_{ij} = \sqrt{(1 - w_{F2})(CoG_i - CoG_i)}$$

0 < w_{F2} < 1 models language-specific a
dimensions

- More generally,
$$d_{ij} = \sqrt{\sum_{k} w_k (x_{ik} - x_{jk})^2}$$

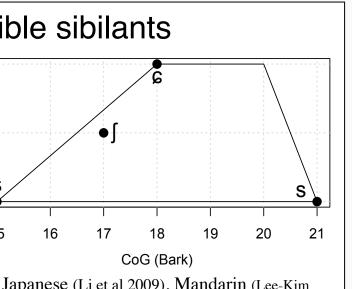
• Sibilants may be drawn from any point in

All languages with 3 sibilant places include [s]

- Suggests $*\int$, *c >> *s, but languages with two sibilant places can contain any of the non-anterior sibilants, implying no fixed ranking among $*\int$, *c, *s
- Initially consider only the CoG dimension $(w_{F2} = 0)$
- The maximally distinct inventory of 3 is [s, c, s] d = 3 for [s-c], [c-s]
- So maximum inventory size is determined by ranking of MAXIMIZE CONTRASTS and MINDIST = 4

	$w_{F2}=0$	MINDIST = 2	MINDIST = 3	Maximize Contrasts	Mindist = 4	MINDIST = 6
a.	s ş			2!		
b.	SC §			3	**	**

• The attested 3-place inventories minimize violation of $\frac{s}{c}$ [s, [, s], or maximize distinctiveness [s, c, s]


	$w_{F2} = 0$	Mindist	Mindist	MAX	* ş/ ¢	Mindist	Mindist	*[
		= 2	= 3	CONTRASTS	-	=4	= 6	0			
a.	☞ s ç ş			3	**	**	**				
b.	s∫ş		*!	3	*	*	**	*			
c.	sç∫	*!	*	3	*	**	***	*			
•••	≥ ¢ J	•		5							

- \blacktriangleright Unattested [s, c, [] is harmonically bounded by [s, [, s]
- 2-place inventories: [s, s] is maximally distinct, [s, f] minimizes effort, [s, c] is harmonically bounded with $w_{F2} = 0$.

	$w_{F2}=0$	MINDIST = 2	MINDIST = 3	MINDIST = 4	MINDIST = 6	* §/ ¢	Max Contrasts	*∫
a.	☞ s ş					*	2	
b.	s ∫				*!		2	*
c.	SÇ			*!	*	*	2	

Lee-Kim, S. (2011) Spectral analysis of Mandarin Chinese sibilant fricatives. ICPhS XVII, 1178-1181. Nowak, P.M. (2006) The role of vowel transitions and frication noise in the perception of Polish sibilants. JPhon 34, 139-152 Lee-Kim, S. (2014) Contrast Neutralization and Enhancement in Phoneme Inventories. PhD dissertation, NYU. Nosofsky, R.M. (1986) Attention, similarity, and the identification-categorization relationship. JEP: General 115, 39-57. Li, F., Edwards, J., Beckman, M.E. (2009) Contrast and covert contrast: The phonetic development of voiceless sibilant fricatives in Padgett, J., Zygis, M. (2007) The evolution of sibilants in Polish and Russian. Journal of Slavic Linguistics 15, 291-324. English and Japanese toddlers. JPhon 37, 111-124. Zygis, M., Padgett, J. (2010) A perceptual study of Polish sibilants, and its implications for historical sound change. JPhon 38, 207-226. Ní Chasaide, A. (1999). Irish. Handbook of the International Phonetic Association, CUP, 111-116. Salminen, T. (2007) Notes on Forest Nenets Phonology. Mémoires de la Société Finno-Ougrienne 253, 349-72. Nissim, G.M. (1981) La Langue Banjun: notes pour une étude phonologique. SLA-Yaounde. Viegas Barros, P. (2009) Un nuevo análisis fonológico del Günün a Yajüch [http://www.adilq.com.ar/FONOLOGIA%20GUNUNA.pdf]

 $(G_i)^2 + w_{F2}(F2_i - F2_i)^2$

allocation of attention between

where
$$\sum_{k} w_{k} = 1$$
 (Nosofsky 1986)
in the space.

[s, c] only occurs where $[c] = /s^{j}/c^{j}$

- The [s, c] inventory can be derived with higher w_{F2} (> 0.87)
- \blacktriangleright Implies the contrast is based primarily on F2 transitions i.e. a palatalization contrast (cf. Padgett & Zygis 2007)
- Derivation of 2-place contrasts is as above for $w_{F2} < 0.87$
- For $w_{F2} > 0.87$, [s-c] is the most distinct 2-way contrast, so possible winners are [s, c] and [s, f], depending on the ranking of MINDIST = 2 and $\frac{s}{c}$

	$w_{F2} = 0.9$	MINDIST = 1.5	MINDIST = 2	* §/ ¢	Max Contrasts	*∫
ĺ	s ş		*!	*	2	
	s∫		*!		2	*
ĺ	S ¢			*	2	

• [s, c, s] is the best dispersed 3-way contrast for all values of w_{F2} , so the typology of 3-way contrasts is unchanged.

		•		e			
	$w_{F2} = 0.9$	Mindist	Mindist	MAX	* §/ ¢	Mindist	*∫
		= 1.1	= 1.5	CONTRASTS	_	= 2	Ū
a.	☞ s ¢ Ş			3	**	*	
b.	s∫ş		*!	3	*	*	*
c.	sç∫	*!	*	3	*	*	*

- If a language puts high weight on F2 transitions then all palatalization contrasts are more distinct, so we expect such a language to include palatalization contrasts in general, not just [s, c]
- \triangleright 2-place [s, c] inventory implies other palatalization contrasts (e.g. [t-t^j])
- True of the [s, c] languages that I am aware of: Japanese (Ito & Mester 2003), Cavineña (Guillaume 2008), Forest Nenets (Salminen 2007), Irish (Ní Chasaide 1999)
- This generalization does not apply to [s, c, s] languages: e.g. Malayalam contrasts these places, but lacks other palatalization contrasts.

- [s, c, s] can be derived with all values of w_{F2} .

- Difficult to derive these patterns with standard markedness constraints
- The generalization that [s, c] inventories imply other palatalization contrasts might suggest that $*c \gg *t^{j}$ (or some other $*C^{j}$ constraint) universally, so [c] implies [t^j].
- But this would incorrectly predict that [s, c, s] inventories should also be accompanied by other palatalization contrasts.

Extensions

- There is almost certainly variation within the broad categories of sibilant distinguished here.
- Such variation could be derived by replacing $*c/s >> * \leq >> *s$ with a more elaborated scale of effort constraints.
- Extend the typology to include palatalized sibilants such as [s^j]
- Distinguish varieties of [s], e.g. dental [s] vs. alveolar [s]
- All of these lines of inquiry require more phonetic data on more languages.