Predicting exceptional prosodification effects in Gradient Harmonic Grammar

Brian Hsu hsub@email.unc.edu

University of North Carolina at Chapel Hill

THE UNIVERSITY

of NORTH CAROLINA

at CHAPEL HILL

1. Introduction

In apparent exceptional prosodification effects:

- Individual morphemes pattern as if they have a different prosodic representation than expected from morpho-syntactic properties.
- Prior prosodic prespecification accounts: Some morphemes select a non-default prosodic representation (Inkelas 1989; Zec 2005).

Main claim: Such patterns are better accounted for in *Gradient Harmonic Grammar* (Smolensky & Goldrick 2016).

The effects result from interaction of two influences on harmony:

- [1] Scaling of constraint violations by prosodic context (Hsu & Jesney 2016)
- [2] Gradient activity of underlying representations (Smolensky & Goldrick 2016)

Case study: Restrictions on segments that follow nasal vowels in Standard French ($[\tilde{\epsilon}]$, $[\tilde{o}]$, $[\tilde{o}]$): possible $\tilde{V}X$ sequences.

2. Restrictions on VX in French

Sensitive to morpho-syntactic constituency: The size of juncture between \tilde{V} and X.

- [1] In stems: V before obstruents only (highly underattested before sonorants (b), unattested before glides or vowels (c)).
 - (1) a. [õd] 'wave' [dãs] 'dance' [lɛ̃ʒ] 'laundry' b. [ʒãʁ] 'genre' [ānui] 'boredom'
- c. *[kãju] *[ɔœʁ]

[2] Across affix boundaries: V before consonants only.

Allomorph selection of prefixes non- 'non-', bien- 'well-':

- (2) [nɔ̃n-inisje] 'uninitiated' [bjɛ̃n-εme] 'well-liked' [nɔ̃-κœspe] 'non-respect' [bjɛ̃-ʒwe] 'well-played'
- [3] Across word boundaries: V before all segments.

Prenominal Adjs before V-initial words:

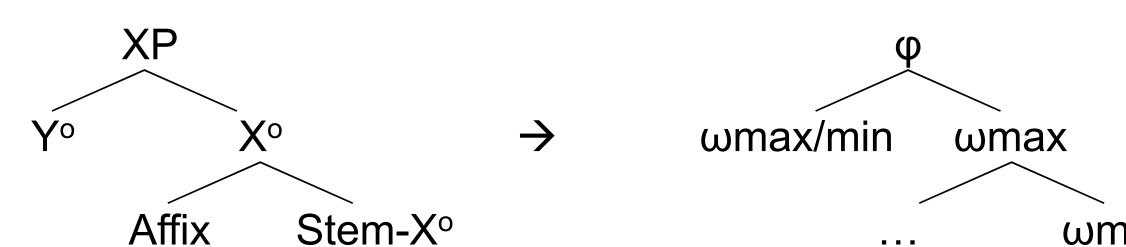
(3) [minɔ̃] 'cute' + [sspwaʁ] 'hope' \rightarrow [minɔ̃ sbyaʁ] (3) [malɛ̃] 'clever' + [sspwaʁ] 'hope' \rightarrow [malɛ̃ ɛspwaʁ]

Subject to *lexical exceptions*: Class-specific restrictions on VX

- Commun-class prenominal Adjs: final [Vn] before V-initial word
 - (4) [kɔmɛ̃] 'common' + [ɔbʒe] 'object' \rightarrow [kɔmɛ̃ nɔbʒe]
- Bon-class prenominal Adjs: final [Vn] before V-initial word
 - (5) $[b\tilde{o}]$ 'good' + [bze] 'object' $\rightarrow [bze]$ nobze]

3. An exceptional prosodification effect

Generalization: Only three basic patterns describe permitted VX sequences in Standard French ([1], [2], [3] in Sec. 2)


Each exceptional restriction on $\tilde{V}X$ resembles a regular restriction that applies across a *smaller* juncture.

- Commun-class Adjs replicate regular prefix boundary pattern [2] (V before consonants only)
- Bon-class Adjs replicate the regular stem-internal pattern [1]
 (V
) before sonorants only)

4. Scalar domain span constraints

Domains of phonological restrictions defined in terms of prosodic constituent structure (Selkirk 1980; Nespor and Vogel 1986; Flack 2009)

 Relevant domains: phonological phrase (φ), recursive prosodic word (ω) spans

Claim: More restrictions hold on VX contained within smaller PCats

- Across word boundary: VX contained in φ
- $((((...\tilde{V})_{\omega min})_{\omega max} ((X...)_{\omega min})_{\omega max})_{\varphi}$
- Across prefix boundary: VX contained in ωmax
- $((\dots \tilde{V} (X \dots)_{\omega \min})_{\omega \max})_{\varphi}$
- Within stem: VX contained in ωmin

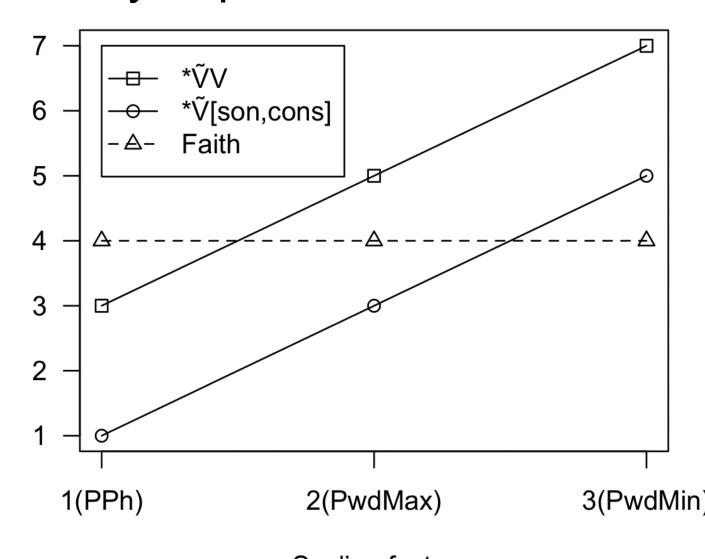
$$((...\tilde{V}X...)_{\omega min/max})_{\varphi}$$

Harmonic Grammar analysis: Markedness constraints are scaled according to the smallest prosodic constituent containing VX.

For any nasal vowel + vowel sequence fully contained in a domain \in (ϕ =0, ω max=1, ω min=2), assign a weighted violation score of w + (s × d),

Where w is the weight of * $\tilde{V}V$ s is the scaling factor of * $\tilde{V}V$ d is the candidate's value along a scale (0,1,2)

Two scalar markedness constraints account for the regular pattern: * \tilde{VV} and * $\tilde{V}[son,cons]$ (violated by nasal vowel + sonorant seq). Sample * \tilde{VV} penalty calcs.: w = 3, s = 2, ($\phi = 0$, $\omega = 1$, $\omega = 1$)


$$w + s(\varphi) = 3 + (2 \times 0) = 3$$

 $w + s(\omega \max) = 3 + (2 \times 1) = 5$
 $w + s(\omega \min) = 3 + (2 \times 2) = 7$

Schematic example: Regular sensitivity to prosodic structure

Simplifying assumptions:

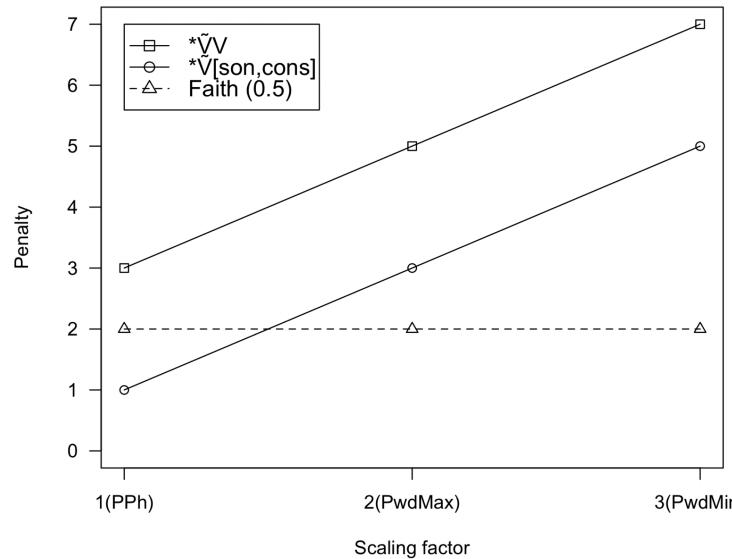
- Non-faithful candidates violate one FAITH constraint.
- Vowels are nasalized underlyingly.
- Linking [n] is epenthesized.

Y-axis = (scaled) constraint penalty X-axis = smallest PCat that fully contains $\tilde{V}X$.

5. Interaction of scaling and gradient activity

In Gradient Harmonic Grammar, phonological symbols can have gradient activity (0 to 1.0) in URs (Smolensky & Goldrick 2016).

- The penalty of a constraint violation is proportional to the activity of the structure that incurs the violation.
- All symbols in output candidates have activity of 1 (cf. Zimmermann 2017); Gradience affects evaluation of faithfulness constraints.


$/p_1a_1k_{0.75}/$	DEP	Max	NoCoda	H
	w=2	w=4	w=1	
☞ pak	-0.25(k)		-1(k)	-1.5
pa		-0.75(k)		-3

$/p_1a_1k_{0.25}/$	DEP	Max	NoCoda	H
	w=2	w=4	w=1	
pak	-0.75(k)		-1(k)	-2.5
☞ pa		-0.25(k)		-1

Main claim: Because gradient activity and scaling both contribute to total harmony, contrasts in gradient activity can replicate the effects of scaling in exceptional patterns.

Schematic ex.: exceptional pattern 1 (commun-class Adjs)

- Gradient activity of 0.5
 proportionally lowers FAITH penalty.
 - At φ level of scaling, this alters relative constraint penalties to resemble the regular pattern (1.0 activity) at ωmax.

Proposal: All items with a nasal vowel allomorph contain underlying gradiently active /Vn/. Exceptional items vary in:

- [1] Underlying activity of the vowel's [NASAL] feature.
- [2] Underlying activity of the nasal consonant's root node.

The GHG analysis accounts for the French pattern with two desiderata that have eluded previous approaches (Tranel 1981; 1995):

- Uniform UR segments for lexical items with a V
 allomorph
- Uniform syntax-prosody mapping w/o prosodic prespecification