Introduction

The Issue

- Debates on structure of the morphology-phonology interface - Morpheme-based
 - Word-based (e.g. cophonologies)
- Empirical issue: Non-concatenative morphology
- Uspanteko shows a complex pattern of stem allomorphy, which has so far only been analyzed with cophonologies (Bennett&Henderson 2013; B&H)
- Our claim: More restrictive, morpheme-based analysis possible

<u>Uspanteko</u>

- Mayan language spoken in Guatemala
- Interactions between stress, syllable weight, vowel quality and pitch accent

Our Claims

- Morpheme representations can contain metrical templates (Saba Kirchner 2013, Iosad 2016, Köhnlein 2016)
- Pitch-accent contrasts can be a surface exponent of contrastive metrical representations, e.g. Morén-Duolljá 2013 (Swedish), losad 2016 (Scottish Gaelic), Köhnlein 2016 (Franconian)
- Our analysis, in line with *Generalized Non-Linear Affixation*, is more restrictive than nominal cophonologies (Bermúdez-Otero 2012 for conceptual arguments)

Some Relevant Facts: Simplex Words

Stress

- Stress falls on one of the last two syllables
- Heavy syllables occur only word-finally, always stressed
- Two syllable types count as heavy: VV(X) and V?C (here: focus on long vowels)
 - V.<u>VV</u>, *<u>V</u>.VV, *<u>VV</u>.V [alk[?].<u>waal]</u> 'son' *[<u>alk</u>[?].waal]

Pitch Accent

- Language has a pitch-accent (PA) contrast
 - Falling tone (indicated with acute accent, H)
 - Level tone (not transcribed)
- Distinctive only in word-final stressed long vowels: <u>VHV</u>, <u>VV</u> - [<u>kúuk</u>[?]] 'squirrel', [<u>t∫uun</u>] 'lime (mineral)'
- Penultimate stress = always falling PA: V^{H} .V, *<u>V</u>.V
 - [<u>í</u>.wir] 'yesterday', *[<u>i</u>.wir]
- Final light syllables never have falling PA

Restricting the Power of Cophonologies: A Representational Solution to Stem Allomorphy in Uspanteko

Data: Affixed Complex Words

<u>Overview</u>

- Allomorphy triggered by a set of possessive prefixes
- Sometimes introduces PA/stress shift
- Stress shift accompanied by vowel shortening in word-final syllables

<u>Main Patterns for Final Stressed Long Vowels</u>

- Pattern A: Prefix introduces falling PA, VV preserved, final stress - [<u>oox</u>] ~ [aw-<u>óox</u>] 'avocado' ~ 'your avocado'
- Pattern B: Prefix introduces falling PA, VV shortens, penultimate stress - [teem] ~ [ín-tem] 'chair' ~ 'my chair'
- Pattern C: Prefix falling PA blocked, VV preserved, final stress - [<u>keem</u>] ~ [in-<u>keem</u>] 'weaving' ~ 'my weaving'
- Pattern D: VV with falling PA in isolation stays the same - [<u>kúuk</u>?] ~ [in-<u>kúuk</u>?] 'squirrel' ~ 'my squirrel'

Tonal Analysis with Cophonologies by B&H

- Contrast between trochaic and iambic feet, iambs default
- Some words have a lexical H, possessive prefixes introduce H
- H restricted to the penultimate vocalic mora of a word
- H attracts stress
- Four nominal cophonologies:
 - Pattern A: MAX (T), IDENT(LENGTH) >> NONFINALITY(T, σ)
 - Pattern B: NONFINALITY(T, σ) >> MAX (T) >> IDENT(LENGTH)
 - Pattern C: NONFINALITY(T, σ), IDENT(LENGTH) >> MAX (T)
 - Pattern D: Max-OO (T), Max(T) >> NONFINALITY(T, σ)

Our Analysis: Basics

- Tenets from Köhnlein (to appear), based on foot inventory in Kager (1993)
- Uspanteko has moraic trochees and syllabic iambs ('default' quantitysensitive feet)
- Interaction with post-lexical H* derives surface pitch accent
- Maximally one tone per mora -> no PA contrast in light syllables
- Moraic trochee: H^{*} cannot associate to foot dependent (μ -) (de Lacy 2002)
- Syllabic iamb: both μ in stressed syllable licensed by the syllabic head (therefore μ^+), can associate with H^{*}

Note: Superscripts are only notational devices, not phonological objects

Björn Köhnlein, Yuhong Zhu

The Ohio State University

Prefix: Segmental information with floating moraic trochee Pattern A: Bimoraic vowel without metrical template Pattern B: Two floating moras without metrical template (same as monomoraic vowel and one mora floating) Pattern C: Bimoraic vowel associated with iambic template Pattern D: Bimoraic vowel associated with trochaic template

Moras associated with a vowel cannot be manipulated All else being equal, iambs are default (cf. B&H)

> В Simplex Complex Lexicon μμ tem intem tem Two moras floating Default iamb Templatic trochee, all µ parsed ('trochaic shortening') Simplex Lexicon Complex Ft Ft Ft

Stored trochee

inkuk[?]

Stored trochee Stored trochee blocks default iamb satisfies templatic trochee, $1^{st} \mu$ unparsed