Majority Rule in Harmonic Serialism

Introduction

Optimizing over constraints defined in terms of precedence relations produces pathologies

- ▶ Precedence relations define **subsequences**, objects without locality or adjacency
- ► Case study: requiring subsequences to agree yields Majority Rule in Harmonic Serialism
- Other cases: Midpoint pathology (Eisner, 1997, 2000) & Bubble Sort (Lamont, 2018)

Majority Rule largest class in the input controls agreement (Lombardi, 1999; Baković, 2000) *technically plurality rule

- ▶ Running example: [s] cannot co-occur with [ʃ] (*s...ʃ, *ʃ...s); inputs with both /s/ and /ʃ/...
- \Rightarrow ...surface only with [s] if underlyingly there are more /s/ than /ʃ/ (m > n)
- \Rightarrow ... surface only with [f] if underlyingly there are more /f/ than /s/ (m < n)

Majority Rule in parallel Optimality Theory

- ► Necessary ranking: AGREE constraint(s) >>> IDENT constraint
- ⇒ Constraints preferring one class must be ranked low enough as to be inactive
- ▶ In parallel OT, Majority Rule optimizes faithfulness constraints
- ⇒ Candidates that satisfy AGREE compete in terms of IDENT
- ⇒ Optimal candidate makes fewest changes, *minimally* violating IDENT
- All else equal, predicted whenever multiple unfaithful candidates satisfy output constraints

/ʃʃss/	Corr(sib)	CC-Ident(ant)[Global ~ Local]	IDENT(ANT)
a. ∫∫ s s	W 10		L
b. ∫i ∫i Si Si Si Si		W 6 ~ W 1	L
$\rightarrow c. \int_i \dots \int_i \dots \int_i \dots \int_i$			2
d. $(s_i) \dots (s_i) \dots (s_i) \dots s_i$			W 3

Why investigate subsequences?

- ▶ Phonotactic generalizations correspond to three subregular formal classes (Heinz, 2018)
- **SL** bans marked substrings
- **SP** bans marked subsequences

TSL bans marked substrings on a tier

Long-distance phenomena

Provide well-defined hypothesis space for investigating classes of output constraints

•		
<	REG	Regular
	\overline{NC}	Non-Counting
$\overline{ m NC}$	LTT	Locally Threshold Testable
	\mathbf{TSL}	Tier-based Strictly Local
	LT	Locally Testable
	PT	Piecewise Testable
PT	$\overline{\mathbf{SL}}$	Strictly Local
	\mathbf{SP}	Strictly Piecewise
\mathbf{SP}	FIN	Finite
	+1	Successor
	<	Precedence

Majority Rule in Harmonic Serialism

- In HS, candidates only differ from the input via at most one unfaithful operation
- Unfaithful candidates can violate a given faithfulness constraint at most once
- ⇒ No arbitrarily large differences in violations of any faithfulness constraint
- ⇒ Mechanism that produces Majority Rule in parallel OT does not exist in HS
- ► Majority Rule is unexpected in HS, but it **optimizes globally evaluated CC-IDENT**

Global and local evaluation in Agreement by Correspondence

- ► Corr(sib): Assign one violation for each pair of sibilants that do not correspond
- ► CC-IDENT(ANT): Assign violations for *pairs* of correspondents disagreeing in [anterior]

 Global evaluation: every pair of correspondents are possible loci

 * * * *

(Bennett, 2013, 2015; Hansson, 2001, 2007, 2010, 2014; Rose & Walker, 2004; Walker, 2000, 2015)

Globally evaluated CC-IDENT produces Majority Rule in HS

- Candidates with corresponding sibilants violate CC-IDENT(ANT) to various degrees
- ► Targeting member of minority class removes more loci than are added always optimal

Step 1: /∫∫ss/	Corr(sib)	CC-Ident(ant)[Global]	IDENT(ANT)
a. ∫∫ s s	W 10		L
b. \(\int_{i} \cdots \int_{i} \cdots \si_{i} \cdot		W 6	L
$\rightarrow C. \int_{i} \cdots \int_{i}$		4	1
$d. \ \int_{\mathbf{i} \cdots \int_{\mathbf{i} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i}} \cdots S_{\mathbf{i} \cdots S_{\mathbf{i}} \cdots S$		W 6	1

Step 2: ∫ ∫ ∫ s	CORR(SIB) CC-IDENT(ANT)[GLOBAL]	IDENT(ANT)
a. ∫∫ s	W 10	L
b. $\int_{i} \dots \int_{i} \dots \int_{i} \dots \int_{i} \dots \int_{i} \dots \int_{i}$ $\rightarrow c. \int_{i} \dots \int_{i} \dots \int_{i} \dots \int_{i} \dots \int_{i} \dots \int_{i} \dots$	W 4	<u>L</u>
$d. \int_{i \cdots j_{i} \cdots j_{i} \cdots s_{i}}^{*} \frac{*}{s_{i} \cdots s_{i}}$	W 6	1

Locally evaluated CC-IDENT cannot produce Majority Rule (or iterative harmony) in HS

- ▶ With local evaluation, each change creates as many new loci as are removed
- ▶ Iterative harmony is harmonically bounded (Wilson, 2003; Pater et al., 2007)

Step 1: /∫∫ s s/	Corr(sib)	CC-IDENT(ANT)[LOCAL]	IDENT(ANT)
a. ∫ ∫ s s	W 10		
\rightarrow b. $\int_i \dots \int_i \dots S_i \dots S_i$		1	
c. $\int_{i} \dots \int_{i} \dots \int$		1	W 1
d. $\int_i \dots \int_i \dots S_i \dots S_i$		1	W 1

Directional Constraint Evaluation

- ▶ Globally-defined constraints motivate iterative spreading in HS, but also overgenerate
- Locally-defined constraints undergenerate, but represent intuitive generalizations
- ⇒ Spreading as myopic (Wilson, 2003, 2006)
- ⇒ Local exceptions in vowel harmony (Finley, 2010)
- ⇒ Blocking in harmony and dissimilation (McMullin & Hansson, 2015; McMullin, 2016)

Iterative harmony with directional output constraints

- ▶ Under directional evaluation, loci are compared in terms of their positions (Eisner, 2000)
- ⇒ Global constraints cannot pool large numbers of loci → no Majority Rule
- ⇒ Local constraints can differentiate between loci → yes iterative spreading
- ▶ Output constraints are specified for directionality: $R \rightarrow L$ or $L \rightarrow R$
- ⇒ R→L evaluation disprefers loci **later** in candidates further to the right is worse
- ⇒ Relative position of loci defined over lexicographical order of segment indices

Step 1: /∫∫ss/	Agree(s	IDENT(ANT)		
\rightarrow a. $\int \dots \int \dots S \dots S \dots S$	$\sigma_2\sigma_3$			1
b. ∫∫ss	W	$\sigma_3\sigma_4$		L
c. ∫ ∫ ∫ s	W		$\sigma_4\sigma_5$	1

- ▶ Directional HS derivations resemble linear rule application (Johnson, 1972)
- ⇒ Rightmost target repaired at each step, application proceeds strictly leftwards
- ⇒ Each step is regular (Eisner, 2000); derivations seem to be as well (proof forthcoming)

Illustration: Ineseño Chumash directional harmony

Regressive sibilant harmony /s-kamisa-tʃ/ \rightarrow [ʃkamiʃaatʃ] 'he wears a shirt' Dissimilation between morphemes /stumukun/ \rightarrow [stumukun] 'mistletoe' /s-tepu?/ \rightarrow [ʃtepu?] 'he gambles' Dissimilation blocks & feeds harmony /s-ti-yep-us/ \rightarrow [ʃtiyepus] 'he tells him' /s-is-ti?/ \rightarrow [ʃiʃti?] 'he finds it' (Applegate, 1972; McCarthy, 2007) /s-iʃ-lu-sisin/ \rightarrow [ʃiʃlusisin] 'they went awry'

Step 1: /s-iʃ-lu-sisin/	IdentTail	OCP	CrispEdge	Agree(sib,ant) $_{R \to L}$			IDENT	
a. si∫lusisin		 	 	W	$\sigma_1\sigma_2$	$\sigma_2\sigma_3$	 	L
b. si∫lusi∫in	W1	 	 	W	$\sigma_1\sigma_2$	$\sigma_2\sigma_3$	$\sigma_3\sigma_4$	1
c. sislusisin		W1		L			 	1
d. sislusisin		 	W1	L		 	1 1 1 1	1
e. si∫lu∫isin		 	 	W	$\sigma_1\sigma_2$	 	$\sigma_3\sigma_4$	1
→ f. ∫i∫lusisin		 	 			$\sigma_2\sigma_3$		1

▶ Inconsistent with harmony as autosegmental spreading (McCarthy, 2007), ruling out a possible tier-based Share constraint (McCarthy, 2010)

Conclusion and Future Directions

- Output constraints over subsequences are too powerful; local constraints are underpowered
- ▶ Directional evaluation maintains local generalizations and the right amount of power
- Directional-dominant harmony systems (Cook, 1979; Mahanta, 2007; Ribeiro, 2002, 2012)
- ▶ Possible replacement of Align-also over subsequences (McCarthy, 2003; Hyde, 2012, 2016)
- Are subsequence constraints ever empirically necessary?
- ► Theory-internal solution to divergent ties (Pruitt, 2009)
- Prove whether derivations are computationally regular