Acoustic Cues Used by Learners of English

Danica Reid
Phonological Processing Lab
Simon Fraser University
Background
Speech Segmentation Cues

- **Top-down**
 - Pragmatics
 - Syntactic structure
 - Semantics

- **Bottom-up**
 - Metrical prosody
 - Phonotactic constraints
 - Transitional Probabilities
 - Allophonic processes
 - Fine-grained phonetic cues

- In L2 acquisition learners try to **adapt L1 bottom-up cues into the L2**
Segmentation of English sC clusters

• Cross-boundary clusters
 • [ðɪskʰeɪl] - ‘this kale’
 • Shorter /s/-duration
 • Environment for allophonic aspiration

• Word-initial clusters
 • [ðísːkeɪl] - ‘this scale’
 • Longer /s/-duration
 • No environment for allophonic aspiration

<table>
<thead>
<tr>
<th>Input:</th>
<th>[ð]</th>
<th>[ɪ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>candidates:</td>
<td>that then these they this ...</td>
<td>this thither that thus then ...</td>
</tr>
</tbody>
</table>
Segmentation of English sC clusters

- Cross-boundary clusters
 - [ðɪskʰeɪl] - ‘this kale’
 - Shorter /s/-duration
 - Environment for allophonic aspiration

- Word-initial clusters
 - [ðɪsːkeɪl] - ‘this scale’
 - Longer /s/-duration
 - No environment for allophonic aspiration

<table>
<thead>
<tr>
<th>Input:</th>
<th>[ð]</th>
<th>[ɪ]</th>
<th>[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>candidates:</td>
<td>that then these they this ...</td>
<td>this thither that thus then ...</td>
<td>this sand soap sign stop school ...</td>
</tr>
</tbody>
</table>
Segmentation of English sC clusters

• Cross-boundary clusters
 • [ðɪskʰeɪl] - ‘this kale’
 • Shorter /s/-duration
 • Environment for allophonic aspiration

<table>
<thead>
<tr>
<th>Input:</th>
<th>[ð]</th>
<th>[ɪ]</th>
<th>[s]</th>
<th>[kʰ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>candidates:</td>
<td>that</td>
<td>this</td>
<td>this</td>
<td>cat</td>
</tr>
<tr>
<td></td>
<td>then</td>
<td>thither</td>
<td>sand</td>
<td>kale</td>
</tr>
<tr>
<td></td>
<td>these</td>
<td>that</td>
<td>soap</td>
<td>could</td>
</tr>
<tr>
<td></td>
<td>they</td>
<td>thus</td>
<td>sign</td>
<td>soap</td>
</tr>
<tr>
<td></td>
<td>this</td>
<td>then</td>
<td>stop</td>
<td>stop</td>
</tr>
</tbody>
</table>

• Word-initial clusters
 • [ðɪsːkeɪl] - ‘this scale’
 • Longer /s/-duration
 • No environment for allophonic aspiration
Segmentation of English sC clusters

- Cross-boundary clusters
 - [ðɪskʰeɪl] - ‘this kale’
 - Shorter /s/-duration
 - Environment for allophonic aspiration

<table>
<thead>
<tr>
<th>candidates:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
<td>[ð]</td>
<td>[ɪ]</td>
<td>[s]</td>
<td>[kʰ]</td>
<td>[eɪ]</td>
</tr>
<tr>
<td></td>
<td>that</td>
<td>this</td>
<td>this</td>
<td>cat</td>
<td>kale</td>
</tr>
<tr>
<td></td>
<td>then</td>
<td>thither</td>
<td>sign</td>
<td>could</td>
<td>cable</td>
</tr>
<tr>
<td></td>
<td>these</td>
<td>that</td>
<td>stop</td>
<td>soap</td>
<td>cane</td>
</tr>
<tr>
<td></td>
<td>they</td>
<td>thus</td>
<td>school</td>
<td>stop</td>
<td>could</td>
</tr>
<tr>
<td></td>
<td>this</td>
<td>then</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Word-initial clusters
 - [ðɪsːkeɪl] - ‘this scale’
 - Longer /s/-duration
 - No environment for allophonic aspiration

<table>
<thead>
<tr>
<th>candidates:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>that</td>
<td>thither</td>
<td>sign</td>
<td>could</td>
<td>kale</td>
</tr>
<tr>
<td></td>
<td>then</td>
<td>this</td>
<td>stop</td>
<td>soap</td>
<td>cable</td>
</tr>
<tr>
<td></td>
<td>these</td>
<td>that</td>
<td>school</td>
<td>stop</td>
<td>cane</td>
</tr>
<tr>
<td></td>
<td>they</td>
<td>thus</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>this</td>
<td>then</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
L2 segmentation of sC clusters

• Cue adaptation leads to better L2 segmentation than cue learning (Altenberg, 2005; Ito & Strange, 2009; Shoemaker, 2014)

Cross-boundary: Loose pills

Word-initial: Lou spills

<table>
<thead>
<tr>
<th>aspiration contrast</th>
<th>no aspiration contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>
Current Study
Research Questions

• Using measures of online processing, in what way do the phonological properties of a first language influence segmentation abilities in a second language?

• How is a phonemic contrast not used for word boundary identification adapted as a word boundary cue in a second language?

• How do learners acquire new word boundary cues in a second language?
Languages of Interest

• Mandarin
 • Phonemic aspiration
 • Duration is not a systematic boundary cue
 • No possible word-initial or cross-boundary sC clusters
 • Phonemic \rightarrow allophonic

Aspirated stop: $[\text{p}^h\text{a}]_{51}$ ‘to fear’
Unaspirated stop: $[\text{pa}]_{51}$ ‘father’

• French
 • No systematic aspiration
 • Some level of duration cue used in word-boundary segmentation
 • Both word-initial and cross-boundary sC clusters are possible
 • No contrast \rightarrow allophonic

Word-initial: $[\text{sp}^\text{ʰ}\text{ɔr}^\text{t}^\text{ɪ}^\text{f}]$ ‘athletic’
Cross-boundary: $[\text{s}^\text{i}s\text{p}^\text{j}^\text{ɛ}s]$ ‘six pieces’
Procedure

• Proficiency task
 • Results not reported in this talk

• Production task
 • Familiarize participants with word-picture pairings
 • Collect acoustic data to compare to perception

• Eye-tracking task
 • Used the visual world paradigm
 • Heard words presented in the frame “click on this”
Eye-tracking in the visual world paradigm

- Participants hear spoken language and manipulate objects in a visual world
- Visual world includes a set of object with interesting linguistic properties
- Eye-movements to each object are monitored throughout the task
Why use eye-movements and the visual world paradigm?

• Relatively natural task

• Eye movements generated very fast (within 200ms of stimulus onset)

• Eye movements time-locked to speech

• Subjects are not aware of eye movements

• Fixation probability maps onto lexical activation
Eye-movement analysis

- Target: this scale
- Competitor: this kale
- Filler: a rose
- Filler: a moose
Experimental Design

• Auditory Stimuli
 • Balanced for frequency
 • 10 *table/stable* pairs per place of articulation
 • 60 phonologically unrelated filler items

• Participants
 • 21 native English speakers
 • 20 native Mandarin speakers
 • 7 native French speakers

![Auditory Stimuli Average Durations](image-url)
Results
Production

/s/ duration

Cross-boundary
Word-initial

VOT duration

Cross-boundary
Word-initial

English Mandarin French
Accuracy

Accuracy by Cluster Type

Native English
Native Mandarin
Native French

Cross-boundary
Word-initial
Perception - maximum proportion of fixations

Target Fixations

Competitor Fixations

<table>
<thead>
<tr>
<th>Time (ms) where 0 is onset of /s/</th>
</tr>
</thead>
<tbody>
<tr>
<td>-750</td>
</tr>
</tbody>
</table>

Proportion of Fixations

English
Mandarin
French

0
0.2
0.4
0.6
0.8
1

Proportion of Fixations

0
0.2
0.4
0.6
0.8
1

Time (ms) where 0 is onset of /s/
Perception - slope of fixations

Target Fixations

Proportion of Fixations

Time (ms) where 0 is onset of /s/

Competitor Fixations

Proportion of Fixations

Time (ms) where 0 is onset of /s/

English Mandarin French
Perception - slope of fixations by language

- **English**: Cross-boundary and Word-initial
- **Mandarin**: Cross-boundary and Word-initial
- **French**: Cross-boundary and Word-initial

![Graphs showing proportion of fixations over time for English, Mandarin, and French languages, with red circles highlighting specific time periods.](image-url)
Perception - crossover point of fixations

- English: 615 ms
- Mandarin: 657 ms
- French: 615 ms
Perception - midpoint of competitor fixations

- **English**
 - Time (ms) where 0 is onset of /s/
 - Proportion of fixations
 - Red circles highlight the midpoint of competitor fixations

- **Mandarin**
 - Time (ms) where 0 is onset of /s/
 - Proportion of fixations
 - Red circles highlight the midpoint of competitor fixations

- **French**
 - Time (ms) where 0 is onset of /s/
 - Proportion of fixations
 - Red circles highlight the midpoint of competitor fixations

Legend:
- **Cross-boundary**
- **Word-initial**
Conclusions

• The presence or absence of an aspiration contrast did not seem to strongly influence real-time processing

• Non-native English speakers more unsure over the course of a trial

• Overall having aspiration as a native contrast did not affect processing as much as predicted

• Future directions:
 • Run more native French speakers
 • A follow up study that would manipulate /s/ duration and VOT duration to determine which cues are being used during processing
Selected References

