The problem

Pitch-accent behaviour of two-member Sino-Japanese compounds looks semi-regular at best.

Morphemes show gradient accenting tendencies in a dataset of 1350 compounds.

In these morphologically minimal pairs, neither M_1 not M_2 solely determines accent:

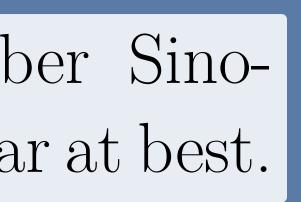
M_1 accent-friendly	M_1 accent-resis
hon本'this; 'main'; 'book'	sin 新'new'
15/24	3/16
hón-poo 本法	sin-poo 新法
'this law'	'new law'
Contrary beha	aviour
hon-ryuu 本流	sín-pei 新兵
'main-stream'	'new recruit'

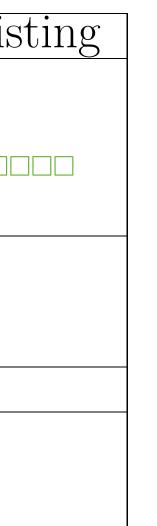
Figure 1: (accented compounds shaded blue)

Why OT and Harmonic Grammar fail to explain these patterns

Switching morpheme order can change accentuation:

字数 $zi-suu$ '# of written characters'	数字 suu-zi 'numeral'
ACCENTED	UNACCENTED
(LH)	(HL)
波長 ha-tyoo 'wavelength'	長波 tyóo-ha 'long-wave'
UNACCENTED	ACCENTED
(LH)	(HL)

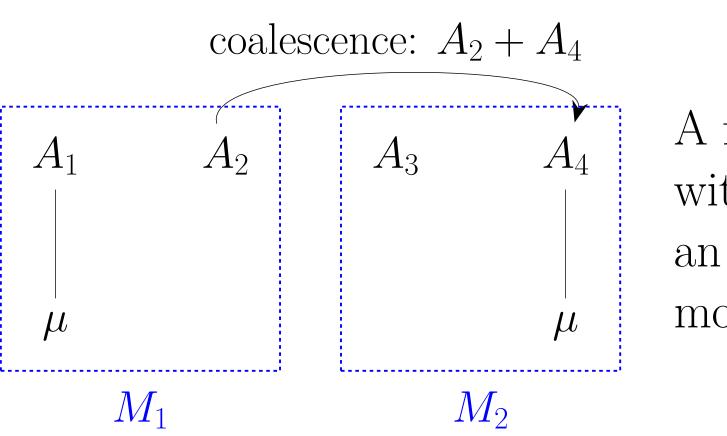

Prosody cannot explain this contrast. (Opposite correlation between prosody and accent between the two pairs.)


In HG or OT, lexically-indexed markedness and faithfulness constraints¹ and binary input values are insensitive to switching the morpheme order, *unless* edge-aligned floating features and coalescence occur, with a floating feature only occurring on one side. This will sacrifice a morpheme's ability to accent variably across compounds. Preventing zi from triggering accent in 数字 suu-zi incorrectly prevents it from triggering accent in a variably accenting M_1 such as + zyuu 'ten' which does accent with zi in zyiu-zi 十字 'cross' but not in unaccented zyuu $moku + \exists$ 'all-eyes'. (See handout for details.)

Weak elements make strong predictions **Evidence for gradient input features from Sino-Japanese compound accent**

Eric Rosen (errosen@mail.ubc.ca)

Department of Cognitive Science, Johns Hopkins University 💱

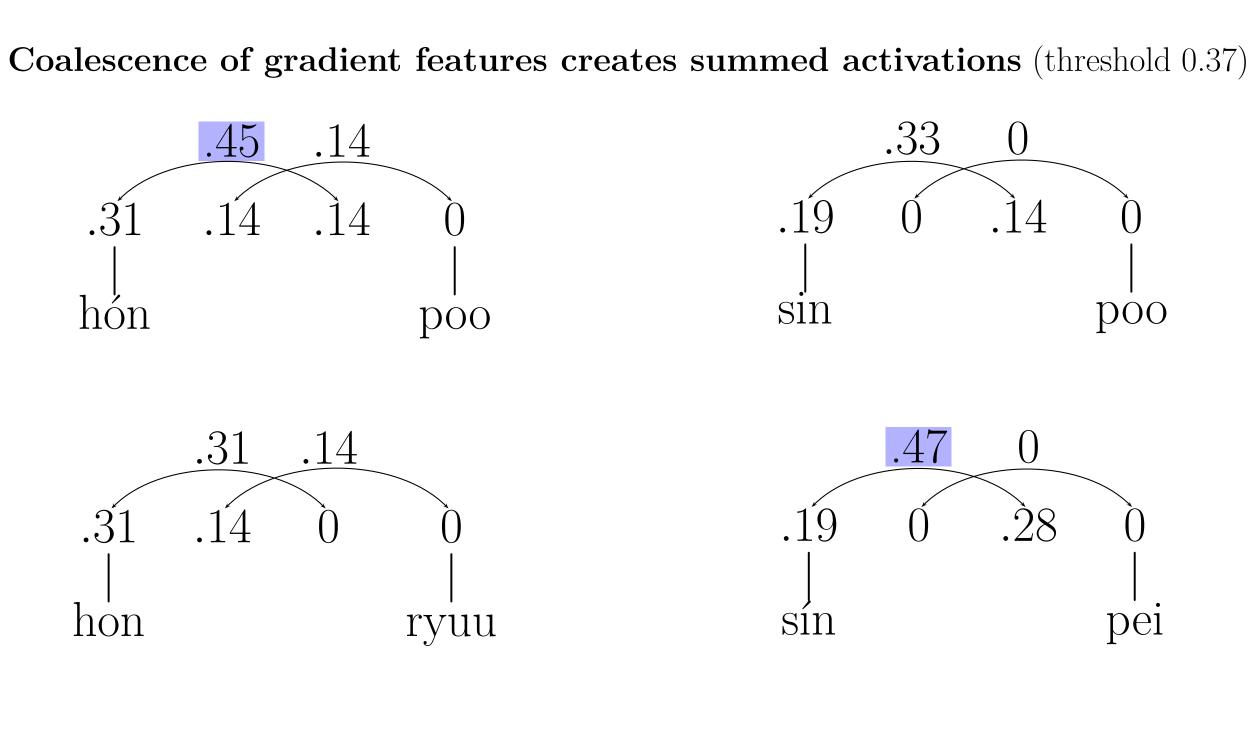

A Gradient Symbolic Computation account of semi-regular patterns

This framework (Smolensky and Goldrick, 2016) allows *partially-activated* input features. When two accent features coalesce in the output, their effective input activation is the sum of the two activations. This allows *accent*ing propensities to be expressed by input activations. (See also Rosen (2016, 2018) for GSC accounts of gradient behaviour in native Japanese compound accent and Japanese rendaku voicing.)

Gradient features derive gradient behaviour

$0_L \ 0.31_A$	0.14_{R}	0_L	0.19_{A}	0_R	0.28_{L}	0_A	0_R	0.14_{L}	0_A	0_R	0_L	0_A	0_R
hon			\sin			hei		hoo			ryuu		
L = floating left A = anchored R = floating right													
Figure 2. Some learned input accent activations for Fig. 1 data													

Accent is determined by combined accenting tendencies of M_1 and M_2


Sample tableau for *hón-poo*

	MAX	Dep	Rmost	PARSE	Prjnc	WDACC	NonFin	Н
hon+hoo	+1.10	-0.90	-0.18	-0.18	+0.12	+0.10	-0.09	
I (hón)-poo	0.49^{2}	-0.50		-0.18	0.12	0.10		0.029
$0.31_A + 0.14_L$								
= 0.45 > 0.37 threshold								
(hón)-(poo)	0.49	-0.50	-0.18		0.12	0.10		0.027
$0.31_A + 0.14_L$								
(hon)-(póo)	0.16	-0.77				0.10	-0.09	-0.61
$0.14_R + 0_A$								
(hon)-(poo)								0
See handout for further tableaux and constraint definitions. $(/h/ \rightarrow [p] \text{ predictably})$								

Figure 2. Some learned input accent activations for Fig. 1 data

A floating feature can coalesce with an anchored feature on an adjacent but not the same morpheme. (strict Linearity)

A learnin	ng alg	gori
features	that	aco
terns am	iong '	728

- exceptions: an accuracy rate of 91.3%.³

Thanks to Paul Smolensky, Matt Goldrick, Najoung Kim, Matthias Lalisse and Tom McCoy for helpful discussion. Research generously funded by NSF INSPIRE grant BCS-1344269.

Rosen, Eric. 2016. Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in japanese through gradient symbolic computation. In *Proceedings of the Berkeley Linguistics Society*, volume 42. ROA 1299. Rosen, Eric. 2018. Predicting semi-regular patterns in morphologically complex words. Linguistics Vanguard 4. ROA 1339. Round, Erich R. 2017. On looking into words (and beyond), chapter Phonological exceptionality is localized to phonological elements: the argument from learnability and Yidiny word-final deletion, 59 – 98. Language Science Press: Berlin. Smolensky, Paul, and Matt Goldrick. 2016. Gradient Symbolic Representations in Grammar: The case of French Liaison. Rutgers Optimality Archive 1552, Rutgers University.

The result

ithm derived partially-activated count for complex accent patcompounds.

Learning

• A simple error-driven algorithm learned constraint weights and feature activations for 728 frequently-used compounds with no errors. • Learned values for a larger group of 1350 compounds yielded 117

Acknowledgements

References

¹See also Round (2017) for an argument that lexical indexation must apply to phonemes, not morphemes.

³This exception rate of 8.7% is well under the 14% limit for a dataset of this size determined by the Tolerance Principle (Yang 2016) that predicts whether a process can be considered productive. An NLP type of approach in which each different prosodic shape was considered a feature yielded a training-set accuracy of 97.1% but these features do not translate directly into principled constraints in linguistic theory.

 $^{^{2}0.49 = 1.10 \}cdot (0.31_{A} + 0.14_{L})$