Gradient Symbolic Representations and the Typology of Ghost Segments

Eva Zimmermann UBC Vancouver

October 6th, 2018 AMP 6

This talk

(1) Ghosts: 'Segments that only surface in certain contexts.' (Yang, 2004, 71)

Ghost segments are best analysed as **weakly active elements**. (Smolensky and Goldrick, 2016; Rosen, 2016; Zimmermann, to appear)

- Accounts for the fact that different types of ghost segments with different markedness thresholds can co-exist within one language. (=case study from Welsh)
- Predicts that ghost segments can only gradiently contribute to markedness if they surface.

(=teaser from Nuuchahnulth)

 Predicts that phonological and lexical factors can contribute to the (non)realization of a ghost segment.
 (=teaser from Catalan)

- 1. Two types of ghost segments
- 1.1 Appearing and disappearing ghosts
- 1.2 Coexistence of different ghosts in Welsh
- 2. Account: Ghost segments and gradient activity
- 2.1 Background
- 2.2 Ghost segments in GSR
- 2.3 Exceptional appearing and disappearing ghosts in Welsh
- 3. Extending the typology
- 4. Alternatives
- 5. Conclusion

Two types of ghost segments

🕒 Type I: Appearing ghosts

- (2) Example: Yawelmani Yokuts (Zoll, 1996, 182+183), (Newman, 1932)
 IND.OBJ /-ni/ talap-ni xataː-ni
 PRECATIVE /-mi/ amic-mi pana-m
 'bow'
 'having approached'
 'having arrived'
 - the precative suffix ends in a ghost /i⁽¹⁾/₁ that only surfaces if its appearance avoids a complex coda (*/amicm/)
- (3) Appearing ghost segments surface if their appearance resolves a markedness problem; their default state is to be unrealized.

Other examples: Slavic yers (Szypra, 1992; Yearley, 1995), Catalan /u/ (Bonet et al., 2007), Mohawk vowels (Rowicka, 1998), French Liaison (Tranel, 1996*a*,*b*), Nguni (Sibanda, 2011)

Type II: Disappearing ghosts

- (4) Example: Nuuchahnulth (Kim, 2003, 178)
 - a. wa?it∫-swi-?i∫

to.sleep-beyond.normality-3Sc.IND

- b. i. ?u-kła:-si∫ Eun-Sook it-to.be.called-1Sc.IND Eun-Sook
 - ii. k^wis-kła:-k'uk-?i∫ different-to.be.called-1SG.IND

```
wa.?itfs.wi.?i∫
'S/he slept in'
?uk.łaː.si∫
'My name is Eun-Sook'
k<sup>w</sup>is.łaː.k'uk.?i∫
'It seems like he has a different name'
```

- the suffix 'to be called' begins with a ghost /k_D/ that only surfaces if its appearance does not cause a complex coda (*/k^wiskła:k'uk?iʃ/)
- (5) Disappearing ghost segments surface if their appearance does not cause a markedness problem; their default state is to be realized.

Other examples: Yawelmani consonants (Noske, 1985; Zoll, 1996), English /a/n/ (Yang, 2004), Nuuchahnulth consonants (Davidson, 2002; Kim, 2003)

🕒 Appearing ghosts in Welsh

(6) Ghost consonant in Welsh (Hannahs and Tallerman, 2006, 798)

- a. gudag eraill 'with others'
- b. guda gwên 'with a smile'

Ghost segments: /gudag_/

Several morphemes surface with an unpredictable consonant only if its appearance avoids a vowel hiatus.

(7)	C	V	
	gyda	gydag	'with'
	tua	tuag	'towards, about'
	а	ac	'and'
	na	nac	'neither, nor'

Solution Disappearing ghosts in Welsh

(8) Welsh definite allomorphy (Hannahs and Tallerman, 2006, 782+783)

a.	yr afon	'the river'	yr (=ər) V
b.	y llyfr	'the book'	y (=ə) C
c.	o'r afon	'from the river'	$\frac{1}{r}$
	o'r llyfr	'from the book'	/ i/ (=i) v, overnding a.+b.

Ghost segments: /ynrn/

A single underlying form $/y_{\square}r_{\square}/$ and either one of these segments can remain unrealized if it would result in a marked structure (=coda or hiatus).

🕒 🔊 Combinations of appearing and disappearing ghosts

(9) Underlying: $/gydag_{\square} y_{\square}r_{\square} nod/$ (Hannahs and Tallerman, 2006, 784)

Realization of /r/ takes precedence over the other ghost segments

- one of the reasons Hannahs and Tallerman (2006) reject a phonological account of the definite allomorphy
- ➡ follows in an account based on gradient activity where segment can have different default states: /r/'s default state is not to be there

Account: Ghost segments and gradient activity

Background: Gradient Symbolic Representation

1. Embedded in a general **computational architecture for cognition** (=Gradient Symbolic Computation Smolensky and Goldrick, 2016)

2. A unified account for different exceptional phonological behaviours:

- liaison consonants in French (Smolensky and Goldrick, 2016)
- semi-regularity of Japanese Rendaku (Rosen, 2016)
- allomorphy in Modern Hebrew (Faust and Smolensky, 2017)
- lexical accent in Lithuanian (Kushnir, 2017)
- lexical stress in Moses Columbian Salishan (Zimmermann, to appear)
- tone sandhi in Oku (Nformi and Worbs, 2017)
- tone allomorphy in San Miguel el Grande Mixtec (Zimmermann, 2017a,b)
- .

Assumptions (Smolensky and Goldrick, 2016)

- symbols in a linguistic representation can have different degrees of presence or numerical activities
- grammatical computation inside Harmonic Grammar (Legendre et al., 1990; Potts et al., 2010)

• any change in activity is a faithfulness violation

Ghost Segments in GSR

- ghosts are weakly active:
 - it is **costly to realize** them
 - (=activity inserted or weakly active element in the output (10))
 - they are easier to delete than 'normal' segments (=MAX_S violated to a lesser degree)
 - they violate/satisfy markedness constraints to a lesser degree
- (10) FULL: Assign violation 1-X for every output element with activity X.
- (11) Gradient Activity=gradient constraint violations

b ₁ a ₁	t ₁ -p _{0.5}	Full	Maxs	Deps	*CC	
		10	10	10	10	
a.	$b_1a_1t_1p_1$			-0.5	-1	-15
b.	$b_1a_1t_1p_{0.5}$	-0.5			-0.75	-12.5
c.	$b_1 a_1 p_{0.5}$	-0.5	-1			-15
r☞ d.	$b_1a_1t_1$		-0.5			-5

🕒 Appearing ghosts in GSR

- but realized to avoid markedness: M + MAX_S $\bigcirc \gg$ DEP_S \bigcirc
- (and non-ghosts are never not realized: $MAx_S \gg M$)

(12) $/-m_1 \mathbf{i_{0.5}}/$ in Yawelmani

	Full	Deps	Maxs	*CC	
	100	20	10	6	
$p_1a_1n_1a_1-m_1i_{0.5}$					
a. p ₁ a ₁ .n ₁ a ₁ .m ₁ i ₁		-0.5			-10
ı≊ b. p₁a₁.n₁a₁m₁			-0.5		-5
$a_1m_1i_1c_1-m_1i_{0.5}$					
\mathbb{R} a. $a_1.m_1i_1c_1.m_1i_1$		-0.5			-10
b. $a_1.m_1i_1c_1m_1$			-0.5	-1	-11

Disappearing ghosts in GSR

- default is realization: $Max_S \oplus \gg Dep_S \oplus$
- but not realized to avoid markedness: M + DEPS $\bigcirc \gg$ MAXS \bigcirc
- (and no true epenthesis: $\mathsf{Dep}_\mathsf{S} \gg \mathsf{M}$)
- (13) $/-\mathbf{k}_{0.5} \mathbf{a}_{1} \mathbf{a}_{1}$ in Nuuchahnult (not Ahousaht; cf. (30))

	Full	Maxs	Deps	*CC	
	100	20	18	2	
${}^{?}_{1}u_{1}$ - k _{0.5} ${}^{1}_{1}a_{1}$					
\mathbb{R} a. $?_1 u_1 k_1 \cdot k_1 a_1$			-0.5		-9
b. ?₁u₁.ɬ₁a₁		-0.5			-10
$k_1^w i_1 s_1 - k_{0.5} i_1 a_1$					
a. $k_1^w i_1 s_1 \cdot k_1 e_1 a_1$			-0.5	-1	-11
rs b. k ^w ₁i₁s₁.ł₁a₁		-0.5			-10

In a nutshell

$/g_1 u_1 d_1 a_1 g_{0.2} / and /y_{0.6} r_{0.6} /$

$/g_{0.2}/$ is not realized unless it can avoid a *HIAT violation

 if a marked structure is unavoidable, a *Cod violation is tolerated but a violation of *HIAT has to be avoided (=preference for /r_{0.6})

Constraints

- (14) a. MAX_S: Assign violation X for any segmental activity X in the input that is not present in the output.
 - b. DEPS: Assign violation X for any segmental activity X in the output that is not present in the input.
 - c. *CoD: Assign violation X for every coda consonant with activity X.
 - d. *HIAT: Assign violation X for every pair of vowels that are adjacent and have the mean activity X.
 - e. *[CC: Assign violation X for every onset cluster with mean activity X.

Markedness and non-ghosts in Welsh

 non-ghost segments are neither deleted nor inserted to avoid *HIAT and/or *CoD problems

(15)

$\dots V_1 a_1 f_1 o_1 n_1 C_1 V_1 \dots$	Maxs	Deps	*[CC	*Ніат	*Сор	
	10	10	8	7	5	
\mathbb{R} a. $V_{1.a_1.f_1o_1n_1.C_1V_1}$				-1	-1	-12
b. $V_{1.}a_{1.}f_{1}o_{1.}C_{1}V_{1}$	-1			-1		-17
c. $V_1.?_1a_1.f_1o_1n_1.C_1V_1$		-1			-1	-15
d. $V_1.?_1a_1.f_1o_1.C_1V_1$	-1	-1				-20

 $Max_S \gg *Cod/*Hiat$ $Dep_S \gg *Cod/*Hiat$

Appearing and disappearing ghosts in Welsh: Default situation

(16) $\sqrt[4]{y_{0.6}r_{0.6}}$ is more present than absent: Preferably realized

y _{0.6} r _{0.6}	Max _s 10	Dep _s 10	
ra y₁r₁		-0.8	-8
b.	-1.2		-12

 $0.6{\times}\text{Max}_S \gg 0.4{\times}\text{Dep}_S$

(17)

 $\bigoplus_{g_{0.2}}/g_{0.2}/$ is more absent than present: Preferably not realized

$g_1 u_1 d_1 a_1 g_{0.2}$	Max _s 10	Dep _s 10	
a. g ₁ u ₁ d ₁ a ₁ g 1		-0.8	-8
r≊ b. g₁u₁d₁a₁	-0.2		-2

 $0.8 \times \text{Dep}_S \gg 0.2 \times \text{Max}_S$

\bigcirc Appearing /g_{0.2}/: Realized to avoid a problem

(18)

$g_1 u_1 d_1 a_1 g_{0.2} V_1 \dots$	Maxs	Deps	*[CC	*Ніат	*Сор	
	10	10	8	7	5	
\mathbb{R} a. $g_1u_1.d_1a_1.g_{0.2}V_1$		-0.8				-8
b. $g_1u_1.d_1a_1.V_1$	-0.2			-1		-9

*Hiat + $0.2 \times Max_S \gg 0.8 \times Dep_S$

Appearing /g_{0.2}/: Not realized if no problem is avoided

(19)

g_1u_1d	$_{1}a_{1}\mathbf{g_{0.2}} C_{1}V_{1}$	Maxs	Deps	*[CC	*Ніат	*Сор	
		10	10	8	7	5	
a.	$g_1u_1.d_1a_1g_{0,2}.C_1V_1$		-0.8			-5	-13
r☞ b.	$g_1u_1.d_1a_1.C_1V_1$	-0.2					-2

 $0.8{\times}\text{Dep}_S \gg 0.2{\times}\text{Max}_S$

(The additional *Cod violation of (19-a) is not even crucial)

\mathbf{V} Disappearing /y_{0.6}r_{0.6}/: Realized if no problem arises

(20)

$\dots V_1 C_1 y_{0.6} r_{0.6} V_1 \dots$	Maxs	Deps	*[CC	*Ніат	*Сор	
	10	10	8	7	5	
E a. $V_1.C_1y_1.r_1V_1$		-0.8				-8
b. $V_1.C_1y_1.V_1$	-0.6	-0.4		-1		-17
c. $V_1 C_1 . r_1 V_1$	-0.6	-0.4			-1	-15
d. $V_1.C_1V_1$	-1.2					-12

 $0.6{\times}\text{Max}_S \gg 0.4{\times}\text{Dep}_S$

$\overrightarrow{\mathbf{v}}$ Disappearing /y_{0.6}r_{0.6}/: /r/ not realized to avoid a coda

(21)

$\dots V_1 C_1 y_{0.6} r_{0.6} C_1 V_1 \dots$	Maxs	Deps	*[CC	*Ніат	*Сор	
	10	10	8	7	5	
a. $V_1.C_1y_1r_1.C_1V_1$		-0.8			-1	-13
$\mathbb{R} b. V_1.C_1\mathbf{y}_1.C_1V_1$	-0.6	-0.4				-10
c. $V_1C_1.r_1C_1V_1$	-0.6	-0.4	-1		-1	-23
d. $V_1.C_1V_1$	-1.2					-12

 $*Cod + 0.4 \times Dep_S \gg 0.6 \times Max_S$

 \overrightarrow{v} Disappearing /y_{0.6}r_{0.6}/: /y/ not realized to avoid a hiatus I

(22)

$\dots V_1 y_{0.6} r_{0.6} V_1 \dots$	Maxs	Deps	*[CC	*Ніат	*Сор	
	10	10	8	7	5	
a. $V_1.y_1.r_1V_1$		-0.8		-1		-15
b. V ₁ .y ₁ .V ₁	-0.6	-0.4		-2		-24
\mathbb{I} c. $V_1 \cdot \mathbf{r}_1 V_1$	-0.6	-0.4				-10
d. V ₁ .V ₁	-1.2			-1		-19

 $^*\text{Hiat} + 0.4{\times}\text{Dep}_S \gg 0.6{\times}\text{Max}_S$

Disappearing /y_{0.6}r_{0.6}/ – Competing Contexts

(23) a. yr afon 'the river' yr (=ər) __ V b. y llyfr 'the book' y (=ə) __ C c. o'r afon 'from the river' o'r llyfr 'from the book' /'r/ (=r) V_, overriding a.+b.

- REALIZEMORPHEME (=RM) ensures that some portion of /y_{0.6}r_{0.6}/ must surface
- in a V__C context, a markedness violation is unavoidable; since *HIAT is higher-weighted than *COD, there is a preference for /r_{0.6}/ after V

Solution Disappearing $/y_{0.6}r_{0.6}/$: /y/ not realized to avoid a hiatus II

(24)

$\dots V_1 y_{0.6} r_{0.6} C_1 V_1 \dots$	RM	Maxs	Deps	*[CC	*Ніат	*Сор	
	100	10	10	8	7	5	
a. $V_1.y_1r_1.C_1V_1$			-0.8		-1	-1	-20
b. $V_1.y_1.C_1V_1$		-0.6	-0.4		-1		-17
Reference c. $V_1 \mathbf{r}_1 . C_1 V_1$		-0.6	-0.4			-1	-15
d. V ₁ .C ₁ V ₁	-1	-1.2					-112

 $^*{\rm Hiat} \gg ^*{\rm Cod}$

💐 💁 Combination of appearing and disappearing ghosts

(25)

g1u1d	1a1 <mark>g0.2</mark> y _{0.6} r _{0.6} C ₁ V ₁	RM 100	Maxs 10	Dep _s 10	*[CC 8	*Ніат 7	*Cod 5	
a.	g1u.1d1a1. g1 y1r1.C1V1			-1.6			-1	-21
b.	g ₁ u. ₁ d ₁ a ₁ . y₁r ₁ .C ₁ V ₁		-0.2	-0.8		-1	-1	-22
疁 C.	$g_1u1d_1a_1r_1.C_1V_1$		-0.8	-0.4			-1	-17
d.	g ₁ u. ₁ d ₁ a ₁ . <mark>g₁y₁.C₁V₁</mark>		-0.6	-1.2				-18

→ vs. (25-d): /g_{0.2}/ never shows its non-default state to avoid codas 0.8×DEP_S ≫ *CoD

 → vs. (25-a): /g_{0.2}/ is an appearing ghost and its default state is thus to not be there 0.8×DEP_S ≫ 0.2×MAX_S

Prediction of a GSR system: Different ghosts within in a language

- elements can have different default states (=present or not)
- and different thresholds for avoiding certain markedness problems

(26)

	default state	non-default state due to		
		*Сор	*Ніат	
b g _{0.2} (17)	not present	no (25)	yes (18)	
🔊 y _{0.6} (16)	present		yes (22)+(24)	
🔊 r _{0.6} (16)	present	yes (21)		

Extending the typology

The typology of ghost segments

- 1. there are two basic types (in a theoretical account):
 - appearing and disappearing ones
- 2. there can be different ghosts within one language:
 - of different types
 - that are influenced differently by the phonology
- 3. ghosts can have special properties:
 - they can only gradiently contribute to markedness (=not be a full-grown problem)
 - lexical and/or phonological facts influence their (non)appearance

Special property I: Gradient markedness

- ghost consonants in Ahousaht appear only after a vowel: Two different marked structures are avoided!
- (27) Avoidance of a coda consonant for $/-C_{\square}V/$ suffixes
 - a.V_/V-C_ \square V/V.C_ \square Vb.C_/VC-C_ \square V/V.CV*VC.C_ \square V \rightarrow coda avoided

(28) Avoidance of a cluster for $/-C_{\square}CV/$ suffixes a. $V_{_}/V-C_{\square}CV/$ $VC_{\square}.CV \rightarrow a \ coda \ is \ tolerated!$ b. $C_{_}/VC-C_{\square}CV/$ $VC.CV \qquad *VCC_{\square}.CV \rightarrow CC \ avoided$

→ ghost consonants in codas are tolerated; non-ghost consonants are not! (GSR account in Zimmermann (2018))

GSR account: Gradient markedness

(29) Ahousaht /- $C_{\square}V$ /: Not realized after a C

tł₁i₁s₁-q₀.₅u₁	Maxs	Full!	*CC	*Сор	
	20	12	10	7	
a. tł₁i₁s₁.q₀.₅u₁		-0.5		-1 -1	-13
r≊ b. tł₁i₁.s₁u₁	-0.5				-10

0.5xFull! + *Cod $\gg 0.5$ xMax_s 0.5xFull! + *Cod $\gg 0.5$ xMax_s

(30) Ahousaht /-C_□CV/: Realized after a V

$r_1 u_1 - k_{0.5} t_1 a_1$	Maxs	Full!	*CC	*Cod	
	20	12	10	7	
\mathbb{R} a. $?_1 u_1 k_{0.5} \cdot \frac{1}{4} a x_1$		-0.5		-0.5 -0.5	-9.5
b. ?1u1.41ar1	-0.5				-10

 $0.5 x Max_S \gg 0.5 x Full! + 0.5 x^* Cod \ 0.5 x Max_S \gg 0.5 x Full! + 0.5 x^* Cod$

Special property II: Lexical and/or phonological factors

- masculine nouns in Catalan realizes an /u/ before plural /s/ if the stem ends in a sibilant (=/u/ avoids a marked structure of two adjacent sibilants)
- some nouns always surface with /u/ in the masculine
- - masculine suffix = ghost segment /u/ that only surfaces if it avoids a marked structure or is adjacent to certain lexically marked nouns

GSR account: Lexical and/or phonological factors

- /-u_{0.5}/ in Catalan surfaces if 1) it solves a markedness problem or 2) it is adjacent to a stem that also contains an /u_{0.5}/ (=coalescence)
- (32) Catalan: Phonological support for /-u_{0.5}/

p ₁ a ₁ s ₁	$ -u_{0.5}-s_1 $	Max _C	*SS	Full!	Depv	Maxv	Intv	
		50	40	30	26	20	5	
a.	$p_1a_1s_1u_{0.5}s_1$			-0.5				-15
b.	$p_1a_1s_1s_1$		-1			-0.5		-50
[™] C.	$p_1a_1s_1u_1s_1$				-0.5			-13

(33) Catalan: Lexical support for /-u_{0.5}/

m ₁ o ₁ s	${}_{1}u^{a}_{0.5} - u^{b}_{0.5}$	Max _C	*SS	Full!	Depv	Maxv	Intv	
		50	40	30	26	20	5	
a.	$m_1o_1s_1u_{0.5}^au_{0.5}^b$			-1				-30
b.	$m_1o_1s_1u_{0.5}^a$			-0.5		-0.5		-25
™ C.	$m_1o_1s_1u_1^{a,b}$						-1	-5

Alternatives

Alternative accounts: Autosegmental defectivity

- floating features without prosodic position (Hyman, 1985; Noske, 1985; Rubach, 1986; Kenstowicz and Rubach, 1987; Sloan, 1991; Yearley, 1995; Tranel, 1995, 1996a; Zoll, 1996)
- empty slots without melodic content (Spencer, 1986; Szypra, 1992)
- marked as (optionally) non-syllabifiying (Clements and Keyser, 1983; Archangeli, 1984)
- → a binary contrast between 'weak' and 'normal'

Alternatives

Alternative accounts: OT implementation

- (34) a. HAVE (: (e.g. MAXF in a floating feature account (Zoll, 1996))
 - b. * (e.g. DEPR⊤ in a floating feature account (Zoll, 1996))
- (35) Appearing ghost in an autosegmental defectivity account

			*CC	*	Have∭
pana-mi	a.	pa.na.mi		*!	
	疁 b.	pa.nam			*
amic-mi	疁 a.	a.mic.m i		*	
	b.	a.micm	*!		*

(36) Disappearing ghost in an autosegmental defectivity account

			*CC	Have≘	*A
?u- k ła	II a.	?u k .ła			*
	b.	?u.∮a		*!	
k ^w is- k ła	a.	k ^w is. k ⁴a	*!		*
	疁 b.	k ^w is.ła		*	

Alternative accounts: The problem

 the coexistence of both appearing and disappearing ghosts within one language is impossible: Have ∩ ≫ * ∩ or * ∩ ≫ Have ∩

Possible solution

- different types of 'defectivity' and different rankings for Max[PLACE], Max[CONT], MaxRT, ... as a possible solution
- compatible with the rest of the grammar?
- gradient markedness is inherently impossible since constraints are categorically violated

Summary

- typology of ghost segments follows from an account where ghost segments are weakly active
 - different types of ghosts within one language
 - phonological or lexical factors influence the realization of ghosts
 - ghosts contribute gradiently to markedness
- this strengthens the argument for Gradient Symbolic Representations

References

- Archangeli, Diana (1984), Underspecification in Yawelmani Phonology and Morphology, PhD thesis, MIT.
- Bonet, Eulàlia, Maria-Rosa Lloret and Joan Mascaró (2007), 'Allomorph selection and lexical preferences: Two case studies', *Lingua* **117**(6), 903–927.
- Clements, George and Samuel Keyser (1983), CV phonology, MIT Press, Cambridge, MA.
- Davidson, Matthew (2002), Studies in Southern Wakashan (Nootka) grammar, PhD thesis, University of New York at Buffalo.
- Fabra, Pompeu (1990), Gramàtica catalana, Teide, Barcelona.
- Faust, Noam and Paul Smolensky (2017), 'Activity as an alternative to autosegmental association', talk given at mfm 25, 27th May, 2017.
- Hannahs, S. J. and Maggie Tallerman (2006), 'At the interface: selection of the Welsh definite article', *Linguistics* 44, 781–816.
- Hyman, Larry (1985), A theory of phonological weight, Foris Publications, Dordrecht.
- Kenstowicz, Michael and Jerzy Rubach (1987), 'The phonology of syllabic nuclei in Slovak', *Language* **63**, 463–497.
- Kim, Eun-Sook (2003), Theoretical issues in Nuu-chah-nulth phonology and morphology (British Columbia), PhD thesis, University of British Columbia.

- Kushnir, Yuriy (2017), 'Accent strength in Lithuanian', talk, given at the workshop on Strength in Grammar, Leipzig, November 12, 2017.
- Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', *Proceedings of the 12th annual conference of the cognitive science society* pp. 388–395.
- Newman, Stanley (1932), 'The Yawelmani dialect of Yokuts', *International Journal of American Linguistics* 7, 85–89.
- Nformi, Jude and Sören Worbs (2017), 'Gradient tones obviate floating features in Oku tone sandhi', talk at the Workshop on Strength in Grammar, Leipzig, November 10, 2017.
- Noske, Roland (1985), Syllabification and syllable changing processes in Yawelmani, *in* H.van der Hulst and N.Smith, eds, 'Advances in Nonlinear Phonology', Foris, pp. 335–361.
- Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), 'Harmonic grammar with linear programming: From linear systems to linguistic typology', *Phonology* pp. 77–117.
- Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar, *in* E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, Berkeley, pp. 235–249.

- Rowicka, Grazyna (1998), 'On Mohawk ghost vowels: audibility vs. visibility', *Proceedings of 24th Annual Meeting of the Berkeley Linguistic Society* pp. 184–194.
- Rubach, Jerzy (1986), 'Abstract vowels in three-dimensional phonology: The yers', *The Linguistic Review* **5**, 247–280.
- Sibanda, Galen (2011), Ghost segments in Nguni, *in* E. G. B.et al, ed., 'Selected Proceedings of the 40th Annual Conference on African Linguistics', Cascadilla Proceedings Project, pp. 130–145.
- Sloan, Kelly Dawn (1991), Syllables and Templates: Evidence from Southern Sierra Miwok, PhD thesis, MIT.
- Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French liaison', Ms, Johns Hopkins University and Northwestern University, ROA 1286.
- Spencer, Andrew (1986), 'A non-linear analysis of vowel-zero alternations in Polish', *Journal of Linguistics* **22**, 249–280.
- Szypra, Jolanta (1992), 'Ghost segments in nonlinear phonology: Polish yers', *Langage* pp. 277–312.
- Tranel, Bernard (1995), The representation of French final consonants and related issues, *in* J.Amastae, G.Goodall, M.Phinney and M.Montalbetti, eds, 'Contemporary Research in Romance Linguistics: Papers from the XXII Linguistic Symposium on Romance Languages'.

- Tranel, Bernard (1996a), Exceptionality in optimality theory and final consonants in French, in K.Zagona, ed., 'Grammatical Theory and Romance Languages: Selected papers from the 25th Linguistic Symposium on Romance Languages (LSRL XXV)', John Benjamins, Amsterdam, pp. 275–291.
- Tranel, Bernard (1996b), French liaison and elision revisited: a unified account within Optimality Theory, *in* C.Parodi, C.Quicoli and M. S.andM. L. Zubizarreta, eds, 'Aspects of Romance Linguistics', Benjamins, pp. 53–78.
- Wheeler, Max (1999), *Catalan: a comprehensive grammar*, Routledge, London. Includes index. URL: http://swbplus.bsz-bw.de/bsz075012650inh.htm
- Yang, So-Young (2004), 'Latent segments in the English indefinite article', *Language and Information Society* pp. 68–83.
- Yearley, Jennifer (1995), Jer vowels in Russian, *in* J.Beckman, L.Walsh Dickey and S.Urbanczyk, eds, 'Papers in Optimality Theory', GLSA Publications, Amherst, Mass., pp. 533–571.
- Zimmermann, Eva (2017*a*), 'Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec', poster, presented at AMP 2017, New York, September 16, 2017.
- Zimmermann, Eva (2017*b*), 'Gradient symbols and gradient markedness: a case study from Mixtec tones', talk, given at the 25th mfm, 27th May, 2017.
- Zimmermann, Eva (2018), 'The gradience of ghosts: An account of unstable segments', talk at mfm 26, Manchester, May 26, 2018.

- Zimmermann, Eva (to appear), 'Gradient symbolic representations in the output: A case study from Moses Columbian Salishan stress', *Proceedings of NELS 48*.
- Zoll, Cheryl (1996), Parsing below the segment in a constraint-based framework, PhD thesis, UC Berkeley.