# Learning a frequency-matching grammar together with lexical idiosyncrasy: MaxEnt versus mixed-effects logistic regression

Jesse Zymet, UC Berkeley

## SPEAKERS KNOW AGGREGATE GENERALIZATIONS AND IDIOSYNCRASIES

## 1. Language learners *frequency match* to statistical generalizations across the lexicon<sup>1</sup>

- E.g., Hungarian vowel harmony (Hayes & Londe 2006): dative forms takes *-nɛk* or *-nɔk*, depending on backness of preceding stem vowel. Stems ending in...
  - o front V tend to take  $-n\varepsilon k$ : [kert-nek] 'garden'-DAT, [yft-nek] 'cauldron'-DAT
  - back V tend to take -nok: [oblok-nok] 'window'-DAT, [bi:ro:-nok], 'judge'-DAT
- Corpus study of monosyl. stems ending in front, unrounded V: 92% take -nɛk; 8% -nɔk.
- In wug tests, speakers presented with fake monosyllabic stems with a front unrounded vowel, in aggregate, *closely frequency-matched to the 8% -nsk rate*.

| (1) |                | -nek | -nɔk | (Hayes & Londe 2006) |
|-----|----------------|------|------|----------------------|
|     | Corpus rate:   | 92%  | 8%   |                      |
|     | Wug test rate: | 93%  | 7%   |                      |

## 2. But language learners also know lexical idiosyncrasies

- Speakers know which attested words harmonize, versus not (Hayes & Londe 2006).
- French speakers even track *morpheme-specific rates* of liaison (Zymet 2018).

# 3. Language learners thus internalize *nested hierarchy of generalizations*:



- Recent MaxEnt model (Moore-Cantwell & Pater 2016, Zuraw & Hayes 2017, Tanaka 2017):
  - General constraint to frequency match general trend across the lexicon (HARMONIZE)
  - Lexical constraints for specific attested words (HARMN(kert), DON'T-HARMN(hi:d))

 <sup>&</sup>lt;sup>1</sup> Frisch, Broe, & Pierrehumbert 1996; Coleman & Pierrehumbert 1997; Eddington 1998, 2004; Berkley 2000; Zuraw 2000, 2010; Bailey & Hahn 2001; Frisch & Zawaydeh 2001; Albright 2002; Albright & Hayes 2003; Ernestus & Baayen 2003; Hayes & Londe 2006; Becker 2009; Hayes, Zuraw et al. 2009; *et seq.*

# 4. Today: Modeling learning of frequency-matching grammar with lexical idiosyncrasy

- Learning simulations reveal that lexical constraints are too powerful in MaxEnt:
  - A priori, general constraint and set of lexical constraints considered *equally viable* hypotheses about the data in MaxEnt;
  - at high levels of learning, lexical constraints come to explain every form in dataset, rendering the general constraint superfluous and ineffective.
  - General constraint weight plummets to zero, failing to predict learners' frequencymatching abilities in wug tests.
- Solution: Switch from MaxEnt—essentially single-level logistic regression model—to hierarchical MIXED-EFFECTS LOGISTIC REGRESSION MODEL.
  - General/lexical constraints no longer equal: general constraints preserved as fixed effects; lexical constraints form random effect.
  - Hierarchical model captures *hierarchy of generalizations*: aggregate trend + idiosyncrasies of individual words.
  - We apply mixed model to variable Slovenian palatalization—with promising results.

# MAXENT: THE GRAMMAR-LEXICON BALANCING PROBLEM

- 5. MaxEnt (Smolensky 1986, Goldwater & Johnson 2003, Hayes & Wilson 2008, et seq)
- Constraints have numerical weights instead of rankings;
- surface forms assigned probabilities as function of weights.
- Learning rooted in *accuracy* and *simplicity*: model takes constraints, finds best weights it can to fit overall rates in dataset; useless constraints discarded—weight set to zero.
- But MaxEnt fits to *overall rates*; investigators hadn't tried to get MaxEnt to also learn which words are un/exceptional until recently. The new approach:
  - General constraints for overall trend, lexical constraints for specific-word behavior
  - o Moore-Cantwell & Pater (2016), Zuraw & Hayes (2017), Tanaka (2017), inter alia.

# 6. Does the MaxEnt approach to learning frequency matching & idiosyncrasy work?

- Suppose we have 46 regulars, 4 irregulars—irregularity rate of 8%.
- 3 constraints: BEREG, BELEX(regulars), BELEX(irregulars) initiated at 0 weight
- If we want to learn the dataset better? Multiply frequencies by 10. Worse? By 0.1.
- (Caveat: introduced *a little* variability: 0.001% /regs/ surface [irreg]; 0.001% /irregs/ as [reg])

| UR          | SR         | Freq.        | BEREG<br>0 | BELEX(reg) | BELEX(irreg)<br>0 |
|-------------|------------|--------------|------------|------------|-------------------|
| /Pogular/   | Regular:   | $\approx 46$ |            |            |                   |
| /Regulal/   | Irregular: | pprox 0      | -1         | -1         |                   |
| /Irragular/ | Regular:   | pprox 0      |            |            | -1                |
| /Irregular/ | Irregular: | $\approx 4$  | -1         |            |                   |

 Table 1: MaxEnt input

- We want MaxEnt to learn weights such that:
  - in wug test, irregular form picked  $\sim 8\%$  of time;
  - attested words (=words in learner input) are pronounced correctly ~100% of time.
  - $\circ$  w(BEREG) = 4, w(BELEX-reg) = 3, w(BELEX-irreg) = 11 gives great results.
- But does MaxEnt *learn* good weights from the input? Let's run learning simulation using Excel Solver, which can fit parameters of nonlinear models (Fylstra et al. 1998, Harris 1998):
  - Trial run by using data in Table 1,
  - and multiplying frequencies of the dataset by a small factor (0, 0.001, etc.)—we call this "childhood". We learn poor weights (*w*(BELEX-irreg)=0.5) that don't fit the data.
  - After each trial, increase frequency factor slightly, get new weights-"adolescence".
  - When frequencies get large and we think we have final weights—"adulthood".



**Figure 1**: *MaxEnt fails to learn generalization together with idiosyncrasy* ( $\sigma = 100$ )

- With frequency factor 0, baby learns 0-valued weights, prefers 50/50 regular/irregular.
- As child grows (freq. factor 0.0001), rapidly starts to learn regulars, slowly tackling irregulars.
- Early in learning, BEREG is used to explain much of the variation—we see that with low nonce irregularity rate.
- But eventually BELEX constraints grow very high, coming to explain entire set of attested data. BEREG comes to explain increasingly *less* of data, eventually *perishing*.
- By adulthood (freq. mult. 1000), **BEREG sinks to 0, rendered superfluous/ineffective.**
- At that point, the learner selects regulars/irregulars at 50/50 rate in wug tests—forgetting the grammar entirely. See Appendix for simulation output numbers.

# 7. Hence, the GRAMMAR-LEXICON BALANCING PROBLEM. In MaxEnt...

- A priori, general constraint/set of lexical constraints equally viable hypotheses about data,
- **consequently lexical constraints too powerful**: lexical constraints learn each word's behavior before general constraint matches overall 8% trend, at which point frequency matching ceases and the general constraint becomes ineffective.
- No phonological learning; just lexical learning. Implausible that speakers fail wug tests once they learn lexicon (see Shademan 2007 for learning in elderly).
- We need a theory that, while accounting for idiosyncrasies, *preserves grammar*.
- We search for model possessing **GENERALITY BIAS**: general, grammatical constraints must be privileged to lexical constraints in the learning process.
  - Adjusting MaxEnt penalty term does not work: dividing  $\sigma$ 's by 10 = dividing freq. multiplier by 100—merely *delays* overfitting (see Appendix).
  - High  $\sigma(BEREG)/low \sigma(BELEX)$  so far does not work; overfits at higher multiplier.

# LEARNING LEXICAL VARIATION WITH MIXED-EFFECTS LOGISTIC REGRESSION

# 8. What about the hierarchical MIXED-EFFECTS LOGISTIC REGRESSION model?

- Similar to binomial logistic regression, except constraints hierarchically arranged as follows:
  - **Fixed effects**: those constraints that we are actually interested in—e.g., phonological constraints, yielding the statistical generalizations in the dataset
  - **Random effects**: constraints that capture the idiosyncrasies in the data—deviations from generalizations captured by fixed effects.
  - We might call this Mixed Effects Maximum Entropy Harmonic Grammar.
- Used widely in science to capture trends & idiosyncrasies in variable datasets;
- Linguists employ random intercepts to measure by-word/lexical class idiosyncrasy (Fruehwald 2012, Zuraw & Hayes 2017, Smith & Moore-Cantwell 2017, *inter alia*);
- Shih & Inkelas (2016)/Shih (2018) even adopt multilevel model as theory of learner.

# 9. Mixed models *hierarchical*: random effects "depreciated" relative to fixed effects

We have a fixed effect—a general constraint—BEREGULAR, whose weight is estimated based on average harmony rate across the entire dataset—**92%**.

# (3a) $w(BEREG): \mu_{all words}$

• We want this weight to accurately estimate the average rate across all words, as that would be a **frequency-matching grammar**, mimicking human behavior in wug tests.

We have a random effect (random intercept) consisting of weights for lexical constraints:

- wBELEX-irreg1, for example, estimated by rate irregular1 (0.001) ...
- *and* by overall rate across dataset:

# (3b) $w(\text{BELEX-irreg1}): \lambda_{irregular1} * \mu_{irregular1} + (1 - \lambda_{irregular1}) * \mu_{all words}$

Raudenbush & Bryk (2012), Snijders & Bosker (2012)

- $\lambda$ : value between 0 and 1, depends on size of the group: w(BELEX-irreg1) will be determined more by  $\mu_{irregular1}$  if data have lots of irreg1 tokens rather than few.
  - Predicts more idiosyncrasy with frequent forms, but more grammatical behavior with infrequent forms (Morgan & Levy 2016, Moore-Cantwell & Smith 2016).
- Think of mixed models as follows: fixed effect weights predicts overall rate, and random effect weights predict *word-specific offsets* from overall rate.
- Source of the generality bias: lexical constraint weights *depend* on overall average rate.

# **10. Mixed model performs well on strict exceptionality dataset**

We want the learning model to predict:

- With BEREG, the average rate across all Words in the dataset—hence a frequencymatching grammar
- With BELEX-reg/BELEX-irreg, the specific rates for every word.

We run a model of the dataset using the glmer function of the *lme4* package R.

- weight of BEREG is the general intercept
- weight of BELEX constraints are the coefficients of the levels of the random intercept.

To extract predicted nonce rate from model, you cannot simply plug *w*BEREG into inverse logit—rather, you must "average" over the levels of the random intercept (Pavlou et al. 2015).

- This involves a complex integral that cannot be calculated analytically;
- Zeger et al. (1998) provide a good approximation:
  - $\circ$  c is constant equal to  $\frac{16\sqrt{3}}{15\pi}$
  - $\circ$   $\tau^2$  is variance of random intercept (14.77)

(4) 
$$\frac{\exp\left(\frac{w\mathsf{B}\mathsf{E}\mathsf{R}\mathsf{E}\mathsf{G}}{\sqrt{c^{2}\tau^{2}+1}}\right)}{1+\exp\left(\frac{w\mathsf{B}\mathsf{E}\mathsf{R}\mathsf{E}\mathsf{G}}{\sqrt{c^{2}\tau^{2}+1}}\right)}$$

| (5) <b>Results</b> : | Word    | WBELEX | Actual rate | Predicted rate |
|----------------------|---------|--------|-------------|----------------|
|                      | reg1    | 0.69   | 0.999       | 0.999          |
|                      | reg2    | 0.69   | 0.999       | 0.999          |
|                      |         |        |             |                |
|                      | reg46   | 0.69   | 0.999       | 0.999          |
|                      | irreg47 | -12.46 | 0.001       | 0.002          |
|                      |         |        |             |                |
|                      | irreg50 | -12.46 | 0.001       | 0.002          |

wBEREG = 6.167

#### OVERALL IRREGULARITY RATE: 8% PREDICTED NONCE IRREGULARITY RATE: 7.4%

This model:

- Predicts word-specific rates—learns lexical effects.
- Frequency-matches overall rate—mimicking subjects in wug tests—without lexical constraints *starving* general constraint. *Grammar sustained after lexical learning.*

## 11. Mixed model performs well on dataset with different lexical rates

• Consider the following: twelve words, each with 1000 tokens, with the different tokens undergoing, say, harmony, at different rates.

| Word | Rate | Word | Rate | Word | Rate |
|------|------|------|------|------|------|
| 1    | 0.00 | 5    | 0.30 | 9    | 1.00 |
| 2    | 0.00 | 6    | 0.80 | 10   | 1.00 |
| 3    | 0.10 | 7    | 0.90 | 11   | 1.00 |
| 4    | 0.20 | 8    | 1.00 | 12   | 1.00 |

Average over all rates: 0.61

#### Table 2: propensity dataset

- Two kinds of constraints:
  - APPLY (HARMONIZE), whose weight should frequency match to **61%** overall rate
  - APPLY-Word1, ..., APPLY-Word12, assists with specific rates

| (6) <b>Results:</b> | Word   | wLex constr. | Actual rate | <b>Predicted rate</b> |
|---------------------|--------|--------------|-------------|-----------------------|
|                     | Word1  | -16.56       | 0.000       | 0.000                 |
|                     | Word2  | -16.56       | 0.000       | 0.000                 |
|                     | Word3  | -7.32        | 0.100       | 0.100                 |
|                     | Word4  | -6.51        | 0.200       | 0.200                 |
|                     | Word5  | -5.97        | 0.300       | 0.300                 |
|                     | Word6  | -3.74        | 0.800       | 0.800                 |
|                     | Word7  | -2.93        | 0.900       | 0.900                 |
|                     | Word8  | 7.14         | 1.000       | 0.999                 |
|                     | Word9  | 7.14         | 1.000       | 0.999                 |
|                     | Word10 | 7.14         | 1.000       | 0.999                 |
|                     | Word11 | 7.14         | 1.000       | 0.999                 |
|                     | Word12 | 7.14         | 1.000       | 0.999                 |
|                     |        |              |             |                       |

wHARMONIZE = 5.130

#### **OVERALL AVERAGE APPLICATION RATE: 0.61 PREDICTED APPLICATION RATE TO NONCE WORDS: 0.66**

- I tried MaxEnt on this dataset:
  - Outcomes similar to other dataset, except *w*APPLY vacillates/plummets to 0 at high levels of lexical learning—see Appendix.
  - See Zymet (2018) for further details.

## APPLYING THE MIXED MODEL TO VARIABLE SLOVENIAN PALATALIZATION

• For example, only *some* suffixes trigger it.

| (7a) | (a) <u>Stem</u> |          | Triggerin          | Triggering suffix /-itsa/ |                   | Non-triggering suffix /-inja/ |   |
|------|-----------------|----------|--------------------|---------------------------|-------------------|-------------------------------|---|
|      | lu <b>k-</b> a  | port-GEN | lu <b>t∫-</b> itsa | port-DIM                  | lu <b>k-</b> inja | port-DIM                      | - |
|      | bo <b>g-</b> a  | god-GEN  | bo <b>3-</b> itsa  | god-DIM                   | bo <b>g-</b> inja | god-DIM                       |   |

- From Toporišič (1997/2000): Of 200 suffixes, only a handful trigger palatalization.
- Different palatalizing suffixes trigger at different rates, suggesting suffix identity plays role:

| (7b) | /luk-itʃ/, port-DIM                      | /luk-ina/, port-ABS                    | /luk-itsa/, port-DIM                   |
|------|------------------------------------------|----------------------------------------|----------------------------------------|
|      | lu <b>t∫</b> -it∫, <b>18%</b> (558/3147) | lu <b>tf</b> -ina, <b>50%</b> (50/100) | lu <b>t∫-</b> itsa, <b>98%</b> (39/40) |
|      | luk-itſ, 82% (2589/3147)                 | luk-ina, 50% (50/100)                  | luk-itsa, 2% (1/40)                    |

• Stems undergo at different rates before same suffix, suggesting stem identity plays role.

| (7c) | Stem                         |           | Stem before diminut  | Stem before diminutive -itsa |               |  |  |
|------|------------------------------|-----------|----------------------|------------------------------|---------------|--|--|
|      | obla <b>k-</b> a 'cloud'-GEN |           | obla <b>t∫-</b> itsa | 'cloud'-DIM                  | Undergoer     |  |  |
|      | nog-a                        | 'leg'-GEN | nɔg-itsa ~ nɔʒ-itsa  | 'leg'-DIM                    | Vacillator    |  |  |
|      | ja <b>k-</b> a               | 'yak'-GEN | ja <b>k-</b> itsa    | <b>'yak'-</b> GEN            | Non-undergoer |  |  |

#### 10. Jurgec (2016) on Slovenian palatalization

- Jurgec extracted words with velar-final stem + palatalizing suffix from two dictionaries:
  - Dictionary of Standard Slovenian (Bajec 2000; 110,000 word types)
  - o Slovenian Orthographic Dictionary (Toporišič 2001; 130,000 word types).
- To obtain token rates for each word, he fed them into *Gigafida* (Logar-Berginc et al. 2012):
  - Text corpus w/  $\sim$ 1.2 billion tokens from written sources ca. 1990–2011.
    - His resulting data set included ~5.7 million tokens.
- Jurgec suggests phonological factors condition variation in his data:
  - Suffixes with front vocoids trigger more regularly
  - Velars k, g undergo more regularly than x.
  - Suffixes with *t* trigger less regularly.
  - Palatalization regularly applies to avoid geminate in  $/... \{k, g\} + k/(-k = -DIM)$
  - Palatalization blocked by distant postalveolars earlier in the stem.
- Jurgec gives MaxEnt account of *phonological* conditioning; suffix idiosyncrasy encoded with [+/- Pal'n]—only picks out suffixes with *any degree* of palatalization.
  - But he *does* observe suffix-specific rates in his study—lexical propensities left to further research.

## **12.** Building upon Jurgec (2016): a corpus investigation into lexical propensities

- I show that:
  - Morphemes have LEXICAL PROPENSITIES: suffixes trigger at different rates, and stems undergo at different rates, patterning across an entire spectrum ([0.7 Pal'n]).
  - Mixed model encodes propensities while frequency matching to trends.
- Extraction method similar to Jurgec:
  - Words consisting of velar-final stems + palatalizing suffix extracted from *Dictionary* of *Standard Slovenian*.
  - Each extracted stem concatenated with each of nine suffixes, creating hypoth. words
  - Fed each word into *Gigafida*, extracting frequencies/token rates
  - Yielded ~3 million tokens of words either undergoing/not undergoing palatalization
- I calculated palatalization rates for each suffix. /ag/ undergoes 22% of time before -/je/, /kak/ 99% of time; average rate before -/je/ is 88%.



Figure 2a: palatalization rates for each suffix

What about stems? A histogram of rates across 246 stems occurring before at least four suffixes:



Figure 2b: Histogram of stem palatalization rate frequencies

- Results suggest morphemes have LEXICAL PROPENSITIES: suffixes trigger at different rates, and stems undergo at different rates, patterning across an entire spectrum.
- We use mixed-effects logistic regression to encode morphemes on a spectrum ([0.7 Pal'n])—significantly improves model fit relative to binary scale ([+/- Pal'n]).
  - Models run using glmer functions of *lme4* package (Bates & Maechler 2011) in R.

- In this handout, we focus on/compare performance of following logistic models:
  - Baseline Model, containing fixed effects for:
    - Stem-final velar identity (*k*, *g*, *x*)
    - Whether suffix begins with a front vocoid
    - Whether stem contains an earlier post-alveolar
    - Whether the suffix contains a post-alveolar affricate
    - (Contains random effect for whole word; thus we're regressing over frequency-weighted types.)
  - Stem+Suffix Model, containing:
    - all factors in Baseline Model
    - plus stem identity and suffix identity, *encoded as random intercepts*.
- Models compared using Akaike Information Criteria (AIC; Akaike 1973), which scores models based on number of parameters and fit to the data: **lower score = better**.
  - See Bolker et al. (2009) for justification on using this to compare mixed models.

### **13. Results of Baseline Model**

- Stem-final velar identity significant: k > g (seemingly a faith effect:  $k \rightarrow t \int but g \rightarrow 3$ )
- Geminate avoidance significant
- $\int \dots t \int +$  avoidance significant
- Suffix with ts significantly associated with lower rates
- frontvocoid not significant
- AIC: **8767.8**

|              | Estimate | Std. Err. | z value | р      |        |
|--------------|----------|-----------|---------|--------|--------|
| Intercept    | 3.95     | 0.47      | 8.29    | <0.001 | * * *  |
| ref: consg   |          |           |         |        |        |
| consx        | 1.59     | 0.66      | 2.41    | 0.015  | *      |
| consk        | 1.96     | 0.47      | 4.11    | <0.001 | * * *  |
| kk           | 4.94     | 0.80      | 6.12    | <0.001 | * * *  |
| frontvocoid  | -0.52    | 0.39      | -1.32   | 0.183  | (n.s.) |
| SS           | -1.67    | 0.78      | -2.12   | 0.033  | *      |
| suff.with.ts | -3.53    | 0.46      | -7.55   | <0.001 | * * *  |

Output 1a: Baseline Model results for Slovenian palatalization

#### 13. Results of Stem+Suffix Model

- Significant k > g effect and geminate effect, but no  $\int \dots f + f$  effect or suffix-with-t effect
- Stem and suffix variances highly positive—suggest stem and suffix condition variation
- Stem variance bigger than suffix variance: maybe undergoers louder than triggers; or linearly-first-element bias; or just relative morpheme counts. Feel free to ask in Q&A.
- AIC value: **7801.5** substantial reduction from Baseline Model's **8767.8**;

Random effects: Groups Name Variance Std.Dev. stem (Intercept) 68.06 8.25 suffix (Intercept) 19.54 4.42 Number of obs: 2940918; words: 4822; stems: 2720; suffixes: 9

#### Fixed effects:

|              | Estimate | Std. err. | z value | р      |       |
|--------------|----------|-----------|---------|--------|-------|
| Intercept:   | 1.15     | 2.24      | 0.51    | 0.60   |       |
| ref: consg   |          |           |         |        |       |
| consx        | 2.36     | 1.00      | 2.35    | 0.02   | *     |
| consk        | 2.59     | 0.69      | 3.75    | <0.001 | * * * |
| k+k          | 7.94     | 1.32      | 6.01    | <0.001 | * * * |
| frontvocoid  | 2.72     | 3.01      | 0.90    | 0.366  |       |
| SS           | -1.20    | 1.12      | -1.06   | 0.284  |       |
| suff.with.ts | -1.88    | 3.58      | -0.52   | 0.598  |       |

Output 1b: Stem+Suffix Model results for Slovenian palatalization

### 14. AICs suggest suffix and stem identities matter (p < 0.001 by likelihood ratio test)

- Baseline Model AIC: 8767.8
- Suffix-Only Model AIC: **8283.7**
- Stem-Only Model AIC: **8128.9**
- Stem+Suffix Model AIC: 7801.5
- See Zymet (2018) for further elaboration on all these models.

## 15. Mixed model learns the phonology, frequency matching to statistical trends

- Matching to overall palatalization rate for k-final stems, and g-final stems
- Predicts k > g effect
- Predicts geminate-avoiding palatalization



Figure 3a: model succeeds in predicting phonological trends

## 16. The mixed model learns lexical propensities

• Fares well in predicting suffix-specific rates:



Figure 3b: model-predicted suffix rates generally match corpus rates

• I submit **mixed-effects logistic regression** as viable approach to modeling lexical variation—to learning of frequency-matching grammar with lexical propensities.

## CONCLUSION

- Language learners internalize nested hierarchy of generalizations:
  - they can frequency match to aggregate statistical generalizations across the lexicon,
  - $\circ$  but also know which words are idiosyncratically exceptional, and which are not.
- MaxEnt/single-level regression doesn't recognize *hierarchicality of generalities*. I suspect problem is broader than just lexical variation:
  - If learner knows two groups of data have different rates,
  - o and averages over rates when encountering novel data lying outside both groups,
  - then how could we model this averaging if we have accurate model of group rates?
  - MaxEnt: specific constraints enough to explain data, general constraint superfluous.

- Mixed-effects logit/mixed-effects MaxEnt surmounts balancing problem:
  - *Hierarchical* theory for a hierarchy of generalizations
  - o Idiosyncratic effects of vocabulary subordinated to broad effects of grammar
  - Prior studies suggest it as potential model; today I give reason *why* this should be our theory of language competence.
- Future questions I hope to work on:
  - How should hierarchical theory look—e.g., how to plug random intercept into theory?
  - Exactly what constraints/kinds of constraints should be considered fixed vs. random?
  - How to expand mixed-effects MaxEnt to cover more than just the binomial case?
  - How to get >2 levels of generalization?

# Appendix

FAILED LEARNING SIMULATION IN MAXENT (strict exceptionality, 8% irregularity rate)

| Freq.      | Be   | BeLex  | BeLex    | Regular | Irrag correct | Nonce       |
|------------|------|--------|----------|---------|---------------|-------------|
| multiplier | Reg  | (regs) | (irregs) | correct | ineg. conect  | irreg. rate |
| 0          | 0    | 0      | 0        | 0.5000  | 0.5000        | 0.5000      |
| 0.0001     | 1.50 | 1.62   | 1.62     | 0.5304  | 0.9582        | 0.1815      |
| 0.001      | 1.27 | 2.88   | 2.88     | 0.8331  | 0.9845        | 0.2185      |
| 0.01       | 1.07 | 4.63   | 4.63     | 0.9723  | 0.9966        | 0.2548      |
| 0.1        | 0.41 | 6.22   | 5.82     | 0.9955  | 0.9986        | 0.3986      |
| 1          | 0.17 | 6.69   | 6.78     | 0.9986  | 0.9989        | 0.4551      |
| 10         | 0.02 | 6.87   | 6.89     | 0.9989  | 0.9989        | 0.4925      |
| 100        | 0    | 6.90   | 6.90     | 0.9989  | 0.9989        | 0.5000      |
| 1000       | 0    | 6.90   | 6.90     | 0.9989  | 0.9990        | 0.5000      |

**Table A1**: MaxEnt learning simulation output numbers for strict exceptionality data





| Freq.<br>multiplier | APPLY | FAITH <sub>5</sub> | APPLY <sub>6</sub> | APPLY <sub>12</sub> | Pred.<br>nonce<br>rate | Pred.<br>Word5<br>rate | Pred.<br>Word6<br>rate | Pred.<br>Word12<br>rate |
|---------------------|-------|--------------------|--------------------|---------------------|------------------------|------------------------|------------------------|-------------------------|
| 0                   | 0.00  | 0.00               | 0.00               | 0.00                | 0.50                   | 0.50                   | 0.50                   | 0.50                    |
| 0.001               | 0.00  | 0.84               | 1.39               | 11.19               | 0.50                   | 0.30                   | 0.80                   | 1.00                    |
| 0.01                | 0.00  | 0.85               | 1.39               | 10.64               | 0.50                   | 0.30                   | 0.80                   | 1.00                    |
| 0.1                 | 1.39  | 2.23               | 0.00               | 8.77                | 0.80                   | 0.30                   | 0.80                   | 1.00                    |
| 1                   | 1.40  | 2.25               | 0.00               | 11.85               | 0.80                   | 0.30                   | 0.80                   | 1.00                    |
| 10                  | 1.37  | 2.22               | 0.02               | 16.17               | 0.80                   | 0.30                   | 0.80                   | 1.00                    |
| 100                 | 0.50  | 1.34               | 0.89               | 8.25                | 0.62                   | 0.30                   | 0.80                   | 1.00                    |
| 1000                | 1.41  | 2.27               | 0.00               | 6.16                | 0.80                   | 0.30                   | 0.80                   | 1.00                    |
| 10000               | 0.00  | 0.85               | 1.39               | 12.60               | 0.50                   | 0.30                   | 0.80                   | 1.00                    |
| 100000              | 0.00  | 0.85               | 1.39               | 11.84               | 0.50                   | 0.30                   | 0.80                   | 1.00                    |
| 1000000             | 0.00  | 0.85               | 1.39               | 11.84               | 0.50                   | 0.30                   | 0.80                   | 1.00                    |

 Table A2: MaxEnt learning simulation output numbers for propensity data

# OVERFITTING OUTCOME GENERAL ACROSS MAXENT PENALTY SETTINGS

- E.g., multiplying  $\sigma$ 's by 10 yields same result as multiplying frequency multiplier by 100.
- Evident in the table below, which presents results of a series of learning simulations of the strict exceptionality dataset from above (but only fitting the weight of BEREG to it).
- Hence decreasing  $\sigma$  merely has the effect of delaying learner overfitting

|                | $\sigma = 1$ |        | σ=          | = 10   | $\sigma = 100$ |        |
|----------------|--------------|--------|-------------|--------|----------------|--------|
|                | irreg. rate  | weight | irreg. rate | weight | irreg. rate    | weight |
| m = 0.01       | 0.4748       | 0.1008 | 0.1127      | 2.0629 | 0.0213         | 3.8258 |
| <i>m</i> = 1   | 0.1127       | 2.0629 | 0.0213      | 3.8258 |                |        |
| <i>m</i> = 100 | 0.0213       | 3.8258 |             |        |                |        |

| Table · | identical | learning | outcomes | across | different | values | of m | and $\sigma$ |
|---------|-----------|----------|----------|--------|-----------|--------|------|--------------|
| I abic. | iaeniicai | ieurning | ouicomes | ucross | ujjereni  | vaines | 0 m  | unu 0        |

- Manipulating  $\mu$  also has no effect—yields same learning outcome as if we set  $\mu = 0$ .
- What about high  $\sigma(BEREG)$  and low  $\sigma(BELEX)$ ?
- I tried it on a few strict exceptionality datasets (but not including the one given in this handout...), and so far the results are negative:
- Setting  $\sigma = 1,000$  for BEREGULAR and  $\sigma = 10$  for the lexical constraints, for example, still yielded overfitting, albeit at a high frequency multiplier.

# COEFFICIENTS FOR STEMS AND SUFFIXES IN SLOVENIAN

| Suffix | Rate  | Stems (sample)    | Rate  |
|--------|-------|-------------------|-------|
| -ovje  | -4.05 | trak-             | -5.34 |
| -ina   | -1.27 | tramik-           | 0.00  |
| -nat   | -0.40 | tradicionalistik- | 0.55  |
| -it∫   | -0.38 | tragikomik-       | 1.14  |
| -ts    | -0.16 | travmatik-        | 1.30  |
| -itsa  | 0.16  | tragik-           | 2.31  |
| -k     | 0.58  |                   |       |
| -je    | 1.48  |                   |       |
| -n     | 4.03  |                   |       |

- Coefficients run the gamut, suggesting gradience.
- Suffix coefficients generally track suffix rates we saw toward the beginning.

#### References

Akaike, Hirotugu. 1973. Information theory and an extension of the maximum likelihood principle. in Petrov, B. N.; Csáki, F., 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971, Budapest: Akadémiai Kiadó, 267–281.

Albright, Adam. 2002. Islands of reliability for regular morphology: Evidence from Italian. Language 78: 684-709.

- Albright, Adam & Bruce Hayes. 2003. Rules vs. analogy in English past tenses: A computational/experimental study. Cognition 90, 119–161.
- Bailey, Todd M. & Ulrike Hahn. 2001. Determinants of wordlikeness: Phonotactics or lexical neighborhoods? Journal of Memory and Language 44, 568–591.
- Bajec, Anton et al. 2000. Slovar slovenskega knjižnega jezika: Electronic edition. Ljubljana: SAZU and Fran Ramovš Institute for the Slovenian Langauge.
- Bates, Douglas & Martin Maechler. 2011. Package 'lme4'. R.
- Becker, Michael. 2009. Phonological Trends in the Lexicon: The Role of Constraints. Doctoral Dissertation, University of Massachusetts, Amherst.
- Berkley, Deborah Milam. 2000. Gradient obligatory contour principle effects. Doctoral dissertation, Northwestern University.
- Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., and White, J. S. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24(3): 127–135.
- Coleman, John & Janet Pierrehumbert. 1997. Stochastic phonological grammars and acceptability. In Third Meeting of the ACL Special Interest Group in Computational Phonology: Proceedings of the Workshop, ed. by John Coleman, 49–56. East Stroudsburg, PA: Association for Computational Linguistics.
- Eddington, David. 1998. Spanish diphthongization as a non-derivational phenomenon, Rivista di Linguistica 10: 335-354.
- Eddington, David. 2004. Spanish Phonology and Morphology: Experimental and Quantitative Perspectives. Amsterdam: John Benjamins.
- Ernestus, Mirjam and R. Harald Baayen. 2003. Predicting the unpredictable: Interpreting neutralized segments in Dutch. Language 79, 5–38.
- Frisch, Stefan A., Janet B. Pierrehumbert & Michael Broe. 2004. Similarity avoidance and the OCP. Natural Language and Linguistic Theory 22:179–228.
- Frisch, Stefan A. & Zawaydeh, Bushra. 2001. The psychological reality of OCP-Place in Arabic. Language 77, 91-106.
- Fruehwald, Josef T. 2012. Redevelopment of a Morphological Class. University of Pennsylvania Working Papers in Linguistics 18(1). Available at: https://repository.upenn.edu/pwpl/vol18/iss1/10.
- Fylstra, D.; Lasdon, L.; Watson, J.; and Waren, A. 1998. Design and use of the Microsoft Excel solver. Interfaces, Vol. 28, No. 5, 29-55.
- Goldwater, Sharon & Mark Johnson. 2003. Learning OT constraint rankings using a maximum entropy model. In the Proceedings of the Stockholm workshop on variation within Optimality Theory.
- Harris, Daniel. 1998. Nonlinear Least-Squares Curve Fitting with Microsoft Excel Solver. Journal of Chemical Education 75(1).
- Hayes, Bruce & Zsuzsa Londe. 2006. Stochastic phonological knowledge: the case of Hungarian vowel harmony. Phonology 23: 59-104.
- Hayes, Bruce & Colin Wilson. 2008. A maximum entropy model of phonotactics and phonotactic learning. Linguistic Inquiry, 39, 379–440.
- Hayes, Bruce, Kie Zuraw, Peter Siptar & Zsuzsa Londe. 2009. Natural and unnatural constraints in Hungarian vowel harmony. Language 85: 822-863.
- Morgan, Emily & Roger Levy. 2016. Abstract knowledge versus direct experience in processing of binomial expressions. Cognition 157:382–402.

- Moore-Cantwell, Claire & Joe Pater. 2016. Gradient Exceptionality in Maximum Entropy Grammar with Lexically Specific Constraints. Catalan Journal of Linguistics 15, 53-66.
- Jurgec, Peter. 2016. Velar palatalization in Slovenian: Local and long-distance interactions in a derived environment effect. Glossa 1(1): 24.
- Logar-Berginc, Nataša, Simon Krek, Tomaž Erjavec, Miha Grčar, Peter Halozan & Simon Šuster. 2012. Gigafida corpus. <u>http://www.gigafida.net</u>: Amebis.
- Pavlou, Menelaos, Gareth Ambler, Shaun Seaman & Rumana Z. Omar. 2015. A note on obtaining correct marginal predictions from a random intercepts model for binary outcomes. BMC Medical Research Methodology 15: 59.
- Raudenbush, Stephen W., & Anthony S. Bryk, 2002. Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks: Sage Publications.
- Shademan, Shabnam. 2007. Grammar and Analogy in Phonotactic Well-formedness Judgments. Ph.D. dissertation, University of California, Los Angeles.
- Shih, Stephanie. 2018. Learning lexical classes from variable phonology. In Proceedings of AJL2.
- Shih, Stephanie & Sharon Inkelas. 2016. Morphologically-conditioned tonotactics in multilevel Maximum Entropy grammar. In Hansson, Farris-Trimble, McMullin, Pulleyblank (eds). Proceedings of the 2015 Annual Meeting on Phonology. Washington, DC: Linguistic Society of America.
- Smith, Brian W. & Claire Moore-Cantwell (2017). Emergent idiosyncrasy in English comparatives. In Andrew Lamont and Katie Tetzloff, eds., NELS 47: Proceedings of the 47th meeting of the North East linguistic Society. Amherst: Graduate Linguistic Student Association. pp. 127-140.
- Snijders, Tom & Roel Bosker. 2012. Multilevel Analysis: An Introduction to Basic and Applied Multilevel Analysis, 2nd edition. Sage.
- Tanaka, Yu. 2017. The sound pattern of Japanese surnames. Doctoral dissertation, UCLA.
- Toporišič, Jože (ed.). 2001. Slovenski pravopis. Ljubljana: SAZU.
- Zeger, Scott L., Kung-Yee Liang & Paul S. Albert. 1998. Models for longitudinal data: a generalized estimating equation approach. Biometrics 44(4): 1049–1060.
- Zuraw, Kie. 2000. Patterned Exceptions in Phonology. Doctoral dissertation, University of California, Los Angeles. ROA-788.
- Zuraw, Kie & Hayes, Bruce. 2017. Intersecting constraint families: An argument for harmonic grammar. Language 93: 497-548.
- Zymet, Jesse. 2018. Lexical propensities in phonology: corpus and experimental studies, grammar, and learning. Ph.D. Dissertation, University of California, Los Angeles.